PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental analysis on unsteady characteristics of sheet/cloud cavitating Venturi flow under the effect of dissolved air

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The highly dynamic and unsteady characteristics of the cavitating flow cause many negative effects such as erosion, noise and vibration. Also, in the real application, it is inevitable to neglect the dissolved air in the water, although it is usually neglected in the previous works to reduce the complexity. The novelty of the present work is analysing the impact of dissolved air on the average/unsteady characteristics of Venturi flow by conducting sets of experimental tests. For this purpose, two different amounts of dissolved air at five pressure levels (i.e. five different sets of cavitation numbers) were considered in the study of cavitating flow inside a Venturi nozzle. The fast Fourier transform analysis of pressure fluctuations proved that the shedding frequency reduces almost by 50% to 66%, depending on the case, with adding the amount of dissolved air. However, the reduction of 14% to 25% is achieved by the vibration transducers. On the other hand, the cavity enlarges as well as bubbly flow is observed in the test chamber at a higher level of dissolved air. Furthermore, it is observed that the re-entrant jet, as the main reason for the cavity detachment, is more effective for the detachment process in cases with a lower level of dissolved air, where the re-entrant jet front penetrates more toward the leading edge.
Rocznik
Strony
63--84
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Power Engineering and Turbomachinery, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • [1] Brennen C.E.: Cavitation and Bubble Dynamics. Cambridge Univ. Press, 2014.
  • [2] Malekshah E.H., Wróblewski W., Bochon K., Majkut M.: Evaluation of modified turbulent viscosity on shedding dynamic of three-phase cloud cavitation around hydrofoil–numerical/experimental analysis. Int. J. Numer. Method. H. (in press).
  • [3] Wróblewski W., Bochon K., Majkut M., Malekshah E.H., Rusin K., Strozik M.: An experimental/numerical assessment over the influence of the dissolved air on the instantaneous characteristics/shedding frequency of cavitating flow. Ocean Eng. 240(2021), 109960.
  • [4] Niedźwiedzka A., Schnerr G.H., Sobieski W.: Review of numerical models of cavitating flows with the use of the homogeneous approach. Arch. Thermodyn. 37(2016), 2, 71–88.
  • [5] Joseph D.D.: Cavitation in a flowing liquid. Phys. Rev. E, 51(1995), 3, R1649-R1650. https://doi.org/10.1103/PhysRevE.51.R1649.
  • [6] Paik B.-G., Kim K.-S., Kim K.-Y., Ahn J.-W., Kim T.-G., Kim K.-R., Jang Y.-H., Lee S.-U.: Test method of cavitation erosion for marine coatings with low hardness. Ocean Eng. 38(2011), 13, 1495–1502.
  • [7] Chen G., Wang G., Hu C., Huang B., Zhang M.: Observations and measurements on unsteady cavitating flows using a simultaneous sampling approach. Exp. Fluids 56(2015), 2, 1–11.
  • [8] Chen G., Wang G., Hu C., Huang B., Gao Y., Zhang M.: Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel. Int. J. Multiphas. Flow 72(2015), 133–140.
  • [9] Simpson A., Ranade V.V.: Modeling hydrodynamic cavitation in venturi: Influence of venturi configuration on inception and extent of cavitation. AIChE J. 65(2019), 1, 421–433.
  • [10] Wróblewski W., Bochon K., Majkut M., Rusin K., Malekshah E.H.: Numerical study of cavitating flow over hydrofoil in the presence of air. Int. J. Numer. Method. H. 32(2021) 5, 1440–1462.
  • [11] Stutz B., Reboud J.: Experiments on unsteady cavitation. Exp. Fluids 22(1997), 3, 191–198.
  • [12] Stutz B., Reboud J.L.: Two-phase flow structure of sheet cavitation. Phys. Fluids. 9(1997), 12, 3678–3686.
  • [13] Shi H., Li M., Nikrityuk P., Liu Q.: Experimental and numerical study of cavitation flows in venturi tubes: From CFD to an empirical model. Chem. Eng. Sci. 207(2019), 672–687.
  • [14] Li M., Bussonničre A., Bronson M., Xu Z., Liu Q.: Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Miner. Eng. 132(2019), 268–274.
  • [15] Niedźwiedzka A., Sobieski W.: Analytical analysis of cavitating flow in Venturi tube on the basis of experimental data. Tech. Sci. 19(2016), 3, 215–229.
  • [16] Charričre B., Goncalves E.: Numerical investigation of periodic cavitation shedding in a Venturi. Int. J. Heat Fluid Fl. 64(2017), 41–54.
  • [17] Fang L., Li W., Li Q., Wang Z.: Numerical investigation of the cavity shedding mechanism in a Venturi reactor. Int. J. Heat Mass Tran. 156(2020), 119835.
  • [18] Reisman G., Wang Y.-C., Brennen C.E.: Observations of shock waves in cloud cavitation. J. Fluid Mech. 355(1998), 255–283.
  • [19] Leroux J.-B., Astolfi J. A., Billard J.Y.: An experimental study of unsteady partial cavitation. J. Fluids Eng. 126(2004), 1, 94–101.
  • [20] Wu X., Maheux E., Chahine G.L.: An experimental study of sheet to cloud cavitation. Exp. Therm. Fluid Sci. 83(2017), 129–140.
  • [21] Barre S., Rolland J., Boitel G., Goncalves E., Patella R.F.: Experiments and modeling of cavitating flows in Venturi: attached sheet cavitation. Eur. J. Mech. B-Fluid. 28(2009), 3, 444–464.
  • [22] Dular M., Khlifa I., Fuzier S., Maiga M.A., Coutier-Delgosha O.: Scale effect on unsteady cloud cavitation. Exp. Fluids 53(2012), 5, 1233–1250.
  • [23] Coutier-Delgosha O., et al.: Local measurements in cavitating flow by ultra-fast Xray imaging. In: Proc. Fluids Engineering Division Summer Meet. 43734(2009),371–379.
  • [24] Xu S., Wang J., Cheng H., Ji B., Long X.: Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor. Ultrason. Sonochem. 67(2020), 105183.
  • [25] Long X., Zhang J., Wang J., Xu M., Lyu Q., Ji B.: Experimental investigation of the global cavitation dynamic behavior in a venturi tube with special emphasis on the cavity length variation. Int. J. Multiphas. Flow 89(2017), 290–298.
  • [26] Tomov P., Khelladi S., Ravelet F., Sarraf C., Bakir F., Vertenoeuil P.: Experimental study of aerated cavitation in a horizontal Venturi nozzle. Exp. Therm. Fluid Sci. 70(2016), 85–95.
  • [27] Kozák J., Rudolf P., Hudec M., Urban O., Štefan D., Huzlík R., Čala M.: Investigation of the cavitation within venturi tube: influence of the generated vortex, In: Advances in Hydroinformatics. Springer, 2018, 1049–1067.
  • [28] Kawakami D.T., Qin Q., Arndt R.: Water quality and the periodicity of sheet/cloud cavitation. In: Proc. Fluids Engineering Division Summer Meet. 41995(2005), 513–517.
  • [29] Pham T., Larrarte F., Fruman D.H.: Investigation of unsteady sheet cavitation and cloud cavitation mechanisms. J. Fluids Eng. 121(1999), 2, 289–296.
  • [30] Wang C., Huang B., Zhang M., Wang G., Wu Q., Kong D.: Effects of air injection on the characteristics of unsteady sheet/cloud cavitation shedding in the convergentdivergent channel. Int. J. Multiphas. Flow 106(2018), 1–20.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d26798a-aaad-41d1-8ad3-0d0fe479ce0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.