PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A simulation of thinning of microphone array in near-field broadband beamformers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the problem of designing an optimal microphone matrix. We define a criterion function where the performance of our matrix should be as close as possible to the desired one based on L2 norm. In the classical approach, increasing a size of the matrix is used to improve the system performance. However, in many cases it is not a good solution. In this paper we propose a solution based on thinning technique. We work with rectangular, equispaced microphone matrix and using metaheuristic approach called simulated annealing we optimise the set of active microphones (we switch off some of the microphones from the regular matrix). For illustrations, few numerical examples are solved. Comparing to the classical approach we show that thinning microphone matrix can significantly improve system performance.
Rocznik
Strony
art. no. 2021204
Opis fizyczny
Bibliogr. 11 poz., wykr.
Twórcy
  • Department of Acoustic, Multimedia and Signal Processing, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Department of Acoustic, Multimedia and Signal Processing, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • 1. D. H. Johnson, D. E. Dudgeon. Array Signal Processing: Concepts and Techniques. New York, NY, USA: Simon & Schuster, Inc., 1992.
  • 2. W. Liu, S. Weiss. Design of frequency invariant beamformers for broadband arrays. IEEE Transactions on Signal Processing, 56(2): 855-860, 2008.
  • 3. B. D. Van Veen, K. M. Buckley. Beamforming: A Versatile Approach to Spatial Filtering. IEEE ASSP Magazine, 5:4-24, 1998.
  • 4. B. K. Lau, Y. H. Leung, K. L. Teo, V. Steeram. Minimax filters for microphone arrays. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 46(12):1522-1524, 1999.
  • 5. R. A. Kennedy, D. B. Ward, T. D. Abhayapala. Nearfield beamforming using radial reciprocity. IEEE Transactions on Signal Processing, 47(1):33-40, 1999.
  • 6. S. Nordebo, I. Claesson, S. Nordholm. Weighted chebyshev approximation for the design of broadband beamformers using quadratic programming. IEEE Signal Processing Letters, 1(7):103-105 1994.
  • 7. Z. G. Feng, K. F. C. Yiu, S. E. Nordholm. Placement design of microphone arrays in near-field broadband beamformers. IEEE Transactions on Signal Processing, 60(3):1195-1204, 2012. DOI: 10.1109/TSP.2011.2178491
  • 8. Z. Li, K. F. C. Yiu, and Z. Feng. A hybrid descent method with genetic algorithm for microphone array placement design. Applied Soft Computing, 13(3):1486-1490, 2013. DOI: 10.1016/j.asoc.2012.02.027
  • 9. Z. G. Feng, K. F. C. Yiu, S. E. Nordholm. Performance Limit of Broadband Beamformer Designs in Space and Frequency. J. Optim. Theory Appl., 164:316-341, 2015. DOI: 10.1007/s10957-014-0543-5
  • 10. M. Gao , K. F. C. Yiu, S. E. Nordholm. On the Sparse Beamformer Design. Sensors, 18(10):3536, 2018. DOI:10.3390/s18103536
  • 11. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing. Science, 220(4598): 671-680, 1983.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d236b10-a4e1-4b2d-9bb0-da498da45489
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.