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Abstract This paper is devoted to the problem of designing an optimal microphone matrix. We define a 
criterion function where the performance of our matrix should be as close as possible to the desired one 
based on L2 norm. In the classical approach, increasing a size of the matrix is used to improve the system 
performance. However, in many cases it is not a good solution. In this paper we propose a solution based on 
thinning technique. We work with rectangular, equispaced microphone matrix and using metaheuristic 
approach called simulated annealing we optimise the set of active microphones (we switch off some of the 
microphones from the regular matrix). For illustrations, few numerical examples are solved. Comparing to 
the classical approach we show that thinning microphone matrix can significantly improve system 
performance. 
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1. Introduction 

Beamforming is one of the most important issues in many real-life problems: wireless communication, 
radars, sonars or matrix antennas and microphones [1, 2]. This term is applicable to both radiation and 
reception of energy. Many systems designed to receive spatially propagating signals often meet the presence 
of some interference signals [3]. If the frequency of interfering signal and our desired coincide, it is 
impossible to use classical temporal filtering. However, if they come from  different points in space, signals 
can be separated using method called spatial filtering. For this purpose a microphone array is used. It acts 
as a spatial filter that consolidates the acoustic signals received by individual microphones. 

The classical approach to the spatial filtering problem is based on a one of the standard microphone 
layouts (e.g. horizontal, vertical). Each microphone is treated as a filter (FIR or IIR), which coefficients 
should be determined so that the system output meets the desired criterion, e.g. signal maximisation or 
minimisation of noise level or its elimination. Such an approach is well known from literature and many 
different approaches have been developed to solve it [4-6]. 

In [7] authors presented some assumptions and methods that allow simultaneous optimisation of 
microphone placement, along with the determination of filter parameters. In addition the presented 
approach shows that using unequally spaced arrays can provide better results than classical microphone 
arrays. Since both the placement vector and the filter coefficient vector interact and have influence on 
system efficiency it cannot be concluded easily that one placement vector is better than another placement 
vector because for each placement we need to consider the corresponding filter coefficient vector. To isolate 
the effect of the placement vector, they inhibit the effect of the filter coefficients by considering an infinite 
length filter. Such an approach was next used in [8,9] to provide some efficient algorithms for microphone 
placement problem.   

In this paper we propose a novel approach to the beamforming problem, based on a “thinning” technique. 
Such an approach allow us to use the same big matrix for different position of a speaker and different 
environment. We start with a large, regular microphone matrix and using a metaheuristic we thin this matrix 
out to get a better system response. In [10] authors considered a problem of sparse beamformer design in 
case of L1 norm and based on properties of this norm they are able to reduce the size of microphone matrix. 
However, to the best of our knowledge, there is no research devoted to the criterion based on L2 norm. 
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The paper is organised as follows: section 2 describes the problem, the proposed solution is presented 
in section 3, while section 4 contains an experimental analysis of the proposed approach. The work ends 
with a short summary and future research ideas (section 5). 

2. Problem formulation 

There is given a rectangular microphone array with size N (n × m microphones) with centre located in rc. 
Signals from microphones are sampled synchronously, and then digital signals are directed to the inputs of 
the FIR filters of order L (each array element is an L-tap finite impulse response filter). At a given time  
a chosen number of microphones (1, 2, …., N) can be active, while others are inactive. 

The desired system response Gd(r, L, f) is also defined, where r is the location of the sound source  
and f  is a frequency. The location of the sound source is not constant and can change (e.g. speaker moves 
around the room). Therefore the desired system response depends on the actual speaker's position. For the 
N-element microphone array the transfer function of the active i-th microphone in the near field is a function 
of: 

 

𝐴𝑖(𝑟, 𝑓) =
1

∥ 𝑟 − 𝑟𝑖 ∥
𝑒

−𝑗2𝜋𝑓∥∥𝑟−𝑟𝑖∥∥
𝑐 , (1) 

 

where c is a speed of sound in the air and ri is a location of the i-th microphone. 
According to [7], the frequency responses of these FIR filters are: 
 

𝐻𝑖(ℎ, 𝑓, 𝐿) = ℎ𝑖
𝑇𝑑0(𝑓)  for  𝑖 = 1, … , 𝑁,  where  ℎ𝑖 = [ℎ𝑖(0), ℎ𝑖(1), … , ℎ𝑖(𝐿 − 1)]ℎ𝑖 ∈ 𝑅𝐿   and 

𝑑0(𝑓) = [1, 𝑒
−𝑗2𝜋𝑓

𝑓𝑠 , … , 𝑒
−𝑗2𝜋𝑓(𝐿−1)

𝑓𝑠 ]. 
(2) 

 
 

It is important to notice that the information about group delay is included in the transfer function. 
For the given microphone number and their placement (we only consider active microphones) a system 

response can be found by solving the following equation: 
 

𝐺(𝑟, 𝑓) = ∑ 𝐻𝑖(ℎ, 𝐿, 𝑓)𝐴𝑖(𝑟, 𝑓) = 𝐴𝑇(𝑟, 𝑓)𝐻(ℎ, 𝑓, 𝐿)

𝑁

𝑖=1

. (3) 

 

The problem we consider in this paper is to design the microphone array (i.e. to determine which of the 
microphones should be active for a given position of a speaker and to calculate the FIR filter coefficients) so 
that the current output the beamformer is as close as possible to the desired one in the sense of L2 norm.  
The cost function for a given speaker position r is defined as follows: 
 

𝐸(ℎ) =
1

∣𝛺∣
∫ 𝜌(𝑟, 𝑓)∣∣𝐴𝑇(𝑟, 𝑓)𝐻(ℎ, 𝑓, 𝐿) − 𝐺𝑑(𝑟, 𝐿, 𝑓)∣∣

2
𝑑𝑟𝑑𝑓,

𝛺

 (4) 

 

where ρ(r,f) is a positive weighting function, while Ω defines spatial-frequency domain which consist of 
passband ΩP and stopband ΩS regions, i.e. 𝛺 = 𝛺𝑃 ∪ 𝛺𝑆. 

The criterion function depends on the filter coefficients and the set of chosen microphones. However, 
with each filter length, a different set of coefficients is connected. In [7, 8] authors noticed that the optimal 
cost function value will not increase as filter length increases to infinity and based on it, they defined the 
system performance limit. Their experiments shows that with increasing the filter length the minimum cost 
function values approach the performance limit quickly. If the filter length is fixed and sufficiently long, the 
problem can be formulated as finding the filter coefficients together with the placement vector 
simultaneously.   

Let 𝜆 = (𝑟1,𝑟2, … , 𝑟𝑁)be the vector of microphone locations and 𝜆𝑎 = (𝑟𝑎1, 𝑟𝑎2, … , 𝑟𝑎𝑀), 
where 𝑀 ⩽ 𝑁is a vector of active microphone locations.  We define the problem as: 
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min
ℎ∈ℝ𝑀𝐿

𝐸(ℎ, 𝜆𝑎, 𝑟)  where  𝐸(ℎ, 𝜆𝑎 , 𝑟) =
1

∣𝛺∣
∫ 𝜌(𝑟, 𝑓)∣∣𝐴𝑇(𝑟, 𝑓, 𝜆𝑎)𝐻(ℎ, 𝑓, 𝐿) − 𝐺𝑑(𝜆𝑎, 𝑟, 𝐿, 𝑓)∣∣

2
𝑑𝑟𝑑𝑓

𝛺
 (5) 

 

 and λa is decision variable for current r (position of a speaker). 
For any given λa function (8) is convex, however non-convex with respect to the placement vector λa. 

3. Algorithms 

The size of the solution space is 2N (exponential), where N is a number of all microphones, thus, it is hard to 
check all possible solutions in a reasonable time. Therefore, we propose a solution based on a metaheuristic 
algorithm called a simulated annealing (SA), a well known local search algorithm [11]. This simple in 
implementation algorithm is a powerful approach to solve a complex problems. 

The name of the algorithm refers to the thermodynamic cooling process in which the crystalline 
substance is heated and then slowly cooled up to the reaching of regular crystal structure. During each 
iteration a new solution is generated from the neighbourhood of the current solution. These two solutions 
are compared and a solution with a better criterion value is always accepted, while a solution with a worse 
value of the objective function can be accepted with a certain probability. This probability decreases with 
the number of iterations and its value depends on the current value of parameter called temperature. 

For the considered problem SA algorithm starts with a criterion value calculated for the case in which all 
microphones are active. Next, a random solution λa is generated (a random microphones are active). In each 
iteration a new solution λanew is generated from a neighbourhood of the current solution λa.  

As a neighbourhood of  λa we define all solutions we can receive after switching an activeness of two random 
microphones. In addition during each iteration we negate current status of two random microphones. The 
SA algorithm is presented below (see Fig. 1). 

 

Fig. 1. SA algorithm. 

4. Numerical experiments 

This section is devoted to the results of the numerical experiments. Note that there are no benchmark 
instances for this problem. All codes are implemented in MATLAB platform and run on PC with Intel(R) Core 
i7 CPU with 2.5 GHz.  As in [7] the desired response function is specified over a region that would fit into a 
room with a single speaker and some listeners. It includes the frequency range of human voice, however we 
cut the upper frequency to 1.5 kHz. It still maintains speech recognition. Since we should allow for the delay 
of the speech to reach the microphones, the desired response function in the passband region is defined as: 
 

𝐺𝑑(𝜆, 𝑟, 𝑓) = 𝑒−𝑗2𝜋𝑓(
∥∥𝑟−𝑟𝑐∥∥

𝑐
+

𝐿−1
2

𝑇), (6) 

 

where 𝑟𝑐 = ∑ 𝑟𝑖
𝑀
𝑖=1 𝑀⁄  denotes the centre position of the placement variable λa and c = 340.9 m/s is the sound 

speed in the air. The desired response is depicted in Fig. 2. The sampling rate is set as 8 kHz, and the 
maximum frequency is chosen as 4 kHz. In addition it is assumed that the minimum distance parameter 
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between two different microphone elements εd can not be smaller than 0.0152 m2. The weighting function is 
chosen as ρ(r, f) = 1. According to [7] we set maximum filter length as L=40. 

The placement configuration problem is considered in two dimensions. The microphone array can 
consists of N=16, 25, 36, 49 elements. The passband region is defined as follows: 
 

𝛺𝑝 = (𝑟, 𝑓): {(𝑟, 𝑓): 0.5 kHz ⩽ 𝑓 ⩽ 1.5 kHz, −0.4 m ⩽ 𝑥 ⩽ 0.4 m, 𝑦 = 0 m} (7) 

 
and the stopband Ωs is a sum of the following three parts: 
 

(𝑟, 𝑓): {(𝑟, 𝑓): 2 kHz ⩽ 𝑓 ⩽ 4 kHz, −0.4 m ⩽ 𝑥 ⩽ 0.4 m, 𝑦 = 0 m},

{(𝑟, 𝑓): 0.5 kHz ⩽ 𝑓 ⩽ 1.5 kHz, 1.8 m ⩽∣ 𝑥 ∣⩽ 3.0 m, 𝑦 = 0 m},

{(𝑟, 𝑓): 2 kHz ⩽ 𝑓 ⩽ 4 kHz, 1.8 m ⩽∣ 𝑥 ∣⩽ 3.0 m, 𝑦 = 0 m}
 (8) 

 

Fig. 2. Desired response of the system – no dumping in passband region. 
 

The regions of the locations for the microphones are chosen as: 
 

𝛬1 = {(𝑥, 𝑦): −0.1 m ⩽ 𝑥 ⩽ 0.1 m, 0.9 𝑚 ⩽ 𝑦 ⩽ 1.5 m}

𝛬2 = {(𝑥, 𝑦): −0.15 m ⩽ 𝑥 ⩽ 0.15 m, 0.9 m ⩽ 𝑦 ⩽ 1.5 m}

𝛬3 = {(𝑥, 𝑦): −0.2 m ⩽ 𝑥 ⩽ 0.2 m, 0.9 m ⩽ 𝑦 ⩽ 1.5 m}
 (9) 

 

Both passband and stopband are discretised, the frequency points are taken every 0.1 kHz and the spatial 
points are taken every 0.02m. In each location Λ1 , Λ2 ,  Λ3 the microphones at the beginning are equispaced 
and fulfil all region. In [7] the authors claim that for 5 microphones and the considered passband and 
stopband regions and desired response function the optimal cost function value is -52.76 dB. The optimised 
placement vector is: λ*={(0, 1.4975), (0,1.4736), (0,1.4139), (0, 1.2585), (0,0.9)}. We treat this solution as 
reference solution, and with our settings of calculations we get cost function value equal to -40.6072 dB for 
this placement. 
  



 

5 of  7 

Vibrations in Physical Systems, 32(2):2021204, 2021 DOI: 10.21008/j.0860-6897.2021.2.04 

The results of our numerical experiments are gathered in Tab. 1. We present the initial value of cost 
function (for all microphones active), best found criterion value with the number of active microphones and 
mean criterion value with the mean number of microphones. The parameters of SA algorithm were as 
follows:  T=100000 (initial temperature), maxit=1000 (number of iterations), γ=0.1 (cooling ratio). 

 

Fig. 3. Initial magnitude of the actual response for matrix 5x5  Λ1, criterion value -16.8800 dB. 

 

Fig. 4. Optimised microphone matrix and magnitude of the actual response for this matrix,  Λ1, initial 
matrix size 5x5 microphones, initial criterion value -16.8800 dB, optimised criterion value -41.4011 dB. 
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Fig. 5. Optimised microphone matrix and magnitude of the actual response for this matrix,  Λ1, initial 
matrix size 6x6 microphones, initial criterion value -20.5185 dB, optimised criterion value -41.4477 dB. 

In Figure 3 a magnitude of the actual response for all 25 microphone is depicted (cross-section in y=1).   
In Figure 4 we can see the best found solution. It can be seen that removing some microphones can provide  
a significant improvement in system efficiency. In Figure 5 we can see an optimised set of microphones and 
the magnitude of the actual response for this optimised placement. The initial size of matrix was 36 (6 rows 
and 6 columns). In both cases thinning of microphone matrix provides better solutions. 

5. Conclusions 

In this paper we show that increasing the size of microphone matrix to get better results is not the correct 
approach. Having a large-sized microphone matrix we can use thinning techniques to get a significantly 
better objective function. Even the proposed, simple in implementation approach, allow us to improve the 
quality of our system.  The future research will focus on  verifying the theoretical results during experiments, 
developing and verifying more sophisticated stochastic optimisation techniques like particle swarm 
optimisation or modern hybrid algorithms. The second approach can be an attempt to construct an exact 
algorithm based on a branch and bound technique.   

 

Tab. 1. Cost function values. 

Λ 
Matrix 

size 
Initial 

c.v. [dB] 
Best c.v. 

[dB] 
Best 

m.nbr 
Mean c.v 

[dB] 
Mean 
m.nbr 

Λ1 
 

4x4 -24.7404 -41.9219 7 -39.1719 11 

5x5
 

-16.8800
 

-41.4011
 

11
 

-35.0871
 

11 

6x6 -20.5195 -41.4474 13 -31.2801
 

16 

7x7 -25.7158 -40.3300 8 -31.0219 16 

Λ2 
 

4x4 -26.3237 -42.4611 6 -40.7075 7 

5x5
 

-17.8042 -41.6706 11 -39.6546 15 

6x6 -19.0891 -31.5189 16 -30.7452 20 

7x7 -23.7878 -31.1964 18 -30.5550 24 

Λ3 
 

4x4 -26.0102 -42.7924 6 -40.0542 9 

5x5
 

-24.1060 -43.5116 8 -41.4291 12 

6x6 -25.5757 -42.3267 10 -36.9096 16 

7x7 -27.1484 -34.0625 21 -31.7225 22 
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