PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of bright spots in the presence of thin beds by AVO and spectral analysis in Miocene sediments of Carpathian Foredeep

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Twin structural traps that lie within the Miocene strata of the Carpathian Foredeep that are localized above Cierpisz and Mrowla-Bratkowice highs exhibit identical bright-spot seismic anomalies, but only those associated with the Cierpisz high are profitable gas reservoirs. Bright spots can be a result of weak gas or water saturation, but also seismic interference known as tuning effect. For these reasons, it is crucial to differentiate between seismic anomalies. In this article, we present the possibilities of verification of seismic anomalies that occur within the siliciclastic Miocene sediments of the Carpathian Foredeep with the application of AVO analysis and spectral decomposition. AVO methodology enabled to limit the number of anomalies that are present in the post-stack seismic data. These anomalies, however, may also be a result of tuning which is common for the heterolithic sequences in the Miocene sediments of the Carpathian Foredeep. For classification of anomalies in the view of the above, spectral decomposition based on the Basis Pursuit algorithm was applied. Spectral decomposition enabled to divide AVO anomalies in those that are the result of gas saturation and the tuning effect. Gas-saturated zones are characterized by higher spectral amplitudes of the lower frequency range, whereas tuning effect yields higher spectral amplitudes for the higher frequency content. This relation is visible for the data set and enables qualitative differentiation for the set of seismic anomalies.
Czasopismo
Rocznik
Strony
1731--1745
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
  • Faculty of Geology, Geophysics and Environmental Protection, AGH-UST University of Science and Technology, Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH-UST University of Science and Technology, Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH-UST University of Science and Technology, Kraków, Poland
Bibliografia
  • 1. Ahmad SS, Brown RJ, Escalona A, Rosland BO (2017) Frequency-dependent velocity analysis and offset-dependent low-frequency amplitude anomalies from hydrocarbon-bearing reservoirs in the southern North Sea, Norwegian sector. Geophysics 82:N51–N60
  • 2. Allen JL, Peddy CP, Fasnacht TL (1993) Some AVO failures and what (we think) we have learned. Lead Edge 12(3):162
  • 3. Avseth P, Mukerji T, Mavko G (2010) Quantitative seismic interpretation: applying rock physics tools to reduce interpretation risk. Cambridge University Press, Cambridge
  • 4. Bała M, Cichy A (2007) Comparison of P-wave and S-wave velocities estimation from Biot-Gassmann and Kuster-Toksoz models with results obtained from acoustic wavetrains interpretation. Acta Geophys 55:222–230
  • 5. Barnes AE (1991) Comments on instantaneous frequency. SEG Technical Program
  • 6. Biot MA (1956) Theory of propagation of elastic waves on a fluid saturated porous solid. Low frequency range. J Acoust Soc Am 28(2):168–191
  • 7. Castagna JP, Backus MM (1993) AVO analysis-tutorial and review. In: Castagna JP, Backus MM (eds) Offset-dependent reflectivity—theory and practice of AVO analysis. Society of Exploration Geophysics, Tulsa, pp 3–37
  • 8. Castagna JP, Swan HW (1997) Principles of AVO crossplotting. Lead Edge 16:337–342
  • 9. Castoro A, White RE, Thomas RD (2001) Thin-bed AVO: compensating for the effects of NMO on reflectivity sequences. Geophysics 66(6):1714–1720
  • 10. Chen S, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43:129–159
  • 11. Chopra S, Castagna JP (2014) AVO. Society of Exploration Geophysis, Tulsa
  • 12. Cichostępski K (2016) Analiza zmian zapisu sejsmicznego z offsetem jako narzędzie do identyfikacji stref akumulacji gazu zmiemnego w cienkowarstwowych utworach zapadliska przedkarpackiego. Dissertation, AGH Univesity of Science and Technology in Krakow. http://winntbg.bg.agh.edu.pl/rozprawy2/11172/full11172.pdf. Accessed 17 June 2019
  • 13. Cichostępski K, Dec J, Kwietniak A (2019a) Relative amplitude preservation in high-resolution shallow reflection seismic: a case study from Fore-Sudetic Monocline, Poland. Acta Geophys 67:77–94
  • 14. Cichostępski K, Dec J, Kwietniak A (2019b) Simultaneous inversion of shallow seismic data for imaging of sulfurized carbonates. Minerals 9:203
  • 15. Downton JE, Russell HB, Lines LR (2000) AVO for managers: pitfall and solutions. CREWES Research Report Volume 12
  • 16. Korneev VA, Golshubin GM, Daly TM, Silin DB (2004) Seismic low-frequency effects in monitoring fluid-saturated reservoirs. Geophysics 69:522–532
  • 17. Kotarba M (1998) Composition and origin of gaseous hydrocarbons in the Miocene strata of the Polish part of the Carpathian Foredeep. Przegląd Geol 46:751–758
  • 18. Kotarba MJ, Więcłąw D, Kosakowski P, Kowalski A (2005) Potencjał węglowodorowy skał macierzystych i geneza gazu ziemnego akumulowanego w utworach miocenu zapadliska przedkarpackiego w strefie Rzeszowa. Przegląd Geol 53:67–76
  • 19. Kwietniak A (2016) Spectral decomposition of a seismic data—thin bed thickness estimation and analysis of attenuating zones, Doctoral Thesis, Hard copy in Library of AGH-UST, Access www.bg.agh.edu.plDissertation, AGH-UST University of Science and Technology
  • 20. Li Y, Zheng X (2008) Spectral decomposition using Wigner–Vile distribution with applications to carbonate characterization. Lead Edge 27:1050–1057
  • 21. Mallat SG, Zhanh Z (1993) Matching pursuit with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415
  • 22. Marzec P, Sechman H, Kasperska M, Cichostępski K, Guzy P, Pietsch K, Porębski SJ (2018) Interpretation of a gas chimney in the Polish Carpathian Foredeep based on integrated seismic and geophysical data. Basin Res 30:210–227
  • 23. Myśliwiec M (2004a) Poszukiwania złóż gazu ziemnego w osadach miocenu zapadliska przedkarpackiego na podstawie interpretacji anomalii sejsmicznych—podstawy fizyczne i dotychczasowe wyniki. Przegląd Geol 52:299–306
  • 24. Myśliwiec M (2004b) Typy pułapek gazu ziemnego i strefowość występowania ich złóż w osadach wschodniej części zapadliska przedkapackiego. Przegląd Geol 52:657–664
  • 25. Myśliwiec M, Borys Z, Bosak B, Liszka B, Madej K, Maksym A, Oleszkiewicz AK, Pietrusiak M, Plezia B, Staryszak G, Świętnicka G, Zielińska C, Zychowicz K, Gliniak P, Florek R, Zacharski J, Urbaniec A, Górka A, Karnkowski P, Karnkowski PH (2006) Hydrocarbon resources of the Polish Carpathian Foredeep: Reservoirs, traps, and selected hydrocarbon fields. In Golonka J, Picha FJ (eds) The Carpathians and their foreland: geology and hydrocarbon resources. AAPG Memoir, vol 84, pp 351–393
  • 26. Ostander WJ (1984) Plane-wave reflection coefficients for gas sands at non-normal angles of incidence. Geophysics 49:1637–1648
  • 27. Oszczypko N (2006) Powstanie i rozwój polskiej części zapadliska przedkarpackiego. Przegląd Geol 54:396–403
  • 28. Partyka G, Gridley J, Lopez J (1999) Interpretational applications of spectral decomposition in reservoir characterization. Lead Edge 18:353–360
  • 29. Paszkowski M, Porębski SJ, Warchoł M (2009) Koncepcja projektu otworu kierunkowego w mioceńskich utworach zapadliska przedkarpackiego. Wiadomości Naftowe i Gazownicze 3:4–13
  • 30. Reineck HE, Wunderlich F (1968) Classification and orientation of flaser and lenticular bedding. Sedimentology 11:99–104
  • 31. Rutherford SR, Williams RH (1989) Amplitude-versus-offset variations in gas sands. Geophysics 54:680–688
  • 32. Shixin Z, Xingyao Y, Guazanghi Z (2011) Dispersion-dependent attribute and application in hydrocarbon detection. J Geophys Eng 8:498–507
  • 33. Singleton S (2009) The effect of seismic data conditioning on pre-stack simultaneous impedance inversion. Lead Edge 28:772–781
  • 34. Syrek-Moryc C (2007) Złoże gazu ziemnego Cierpisz ważnym argumentem w problematyce przyszłych prac poszukiwawczych w cienkowarstwowych utworach miocenu zapadliska przedkarpackiego i związanych z nim potencjalnych zasobów gazu ziemnego. Nafta-Gaz 2:95–99
  • 35. Tary JB, Herrera RH, Han J, van der Baan M (2014) Spectral estimation—what is new? What is next? Rev Geophys 2014:723–749
  • 36. Wiggins R, Kenny GS, McClure CD (1983) A method for determining and displaying the shear-velocity reflectivities of a geologic formation. European patent application 0113944
  • 37. Yang M (2003) Monochromatic AVO: an indicator that sees through wave interference. In: 73rd annual international meeting SEG, Expanded Abstracts, pp 201–208
  • 38. Yushun D, Zhaoquan P, Lingbang Z, Mingbo B (2011) Carbonate reservoir and gas‐bearing property detection using sweetness. In: SEG annual meeting
  • 39. Zhang R, Castagna JP (2011) Thin-layer reflectivity inversion using basis pursuit decomposition. Geophysics 76:R147–R158
  • 40. Zoeppritz K (1919) Erdbebenwellen VIII B, Uber Reflexion und durchgang seismischer wellen duch unstetigkeitsflachen. Gottinger Nachr 1:66–84
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d208744-9806-4924-a5cb-db9dbbde63ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.