PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Employing Minimum age model (MAM) and Finite mixture modeling (FMM) for OSL age determination of two important samples from Ira Trench of North Tehran Fault

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ira trench site is in a point where, the surface trace of North Tehran Fault (NTF) joins the Mosha Fault (MF) in the north-eastern margin of Tehran and can provide important paleosismological information for Tehran. The Ira trench, were divided into 6 packages (I to VI), described, according to their composition, relative and absolute ages. Package I consists of units 23, 25, 26, 27, 28, 29, 30 and 31. The whole package I mainly belongs to Holocene, and provides essential constraints for the recent paleo-earthquake activity of the EMF and NTF zone. Therefore, finding accurate ages for the units of this package is very important. Three colluvial wedges (units 23, 26, 28) are present between 20 and 36.5 m north in package I, which are assigned to 3 episodes of activity on Fault 13. Central age model (CAM) provided OSL ages of 35.0 ± 6.1, 7.3 ± 1.3, 6.4 ± 0.9 and 56 ± 6.5 ka for units 23, 26, 28 and 29, respectively. The conflicting ages of 56 ± 6.5 and 35.0 ± 6.1 ka (for units 23 and 29, respectively) as compared to the underlying younger units suggest that these ages are overestimated. MAM provided OSL ages of 13.1 ± 4.3 and 3.5 ± 0.4 ka for units 23 and 29, respectively. The contribution of the new statistical age model of sample IRA4 to the paleoseismic data is discussed.
Wydawca
Czasopismo
Rocznik
Strony
38--47
Opis fizyczny
Bibliogr. 59 poz., wykr.
Twórcy
autor
  • Institute of Geophysics, The University of Tehran, Kargar Shomali, Tehran, Iran
autor
  • Institute of Geophysics, The University of Tehran, Kargar Shomali, Tehran, Iran
autor
  • Research Institute for Earth Sciences, Geological Survey of Iran, Azadi Square, Meraj Avenue, P.O. Box 13185-1494, Iran
Bibliografia
  • 1. Abbassi MR and Farbod Y, 2009. Faulting and folding in Quaternary deposits of Tehran's piedmont (Iran). Journal of Asian Earth Science 34: 522–531, DOI 10.1016/j.jseaes.2008.08.001.
  • 2. Aitken MJ and Smith BW, 1988. Optical dating: recuperation after bleaching. Quaternary Science Reviews 7: 387–393, DOI 10.1016/0277-3791(88)90034-0.
  • 3. Allen MB, Vincent SJ, Alsop I, Ismail-zadeh A and Flecker R, 2003. Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics 366: 223–239, DOI 10.1016/S0040-1951(03)00098-2.
  • 4. Ambraseys NN and Melville CP, 1982. A History of Persian Earthquakes. Cambridge University Press, London (219 pp.).
  • 5. Arnold LJ and Roberts RG, 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quaternary Geochronology 4(3): 204–230, DOI 10.1016/j.quageo.2008.12.001.
  • 6. Arnold LJ, Bailey RM and Tucker GE, 2007. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology 2: 162–167, DOI 10.1016/j.quageo.2006.05.003.
  • 7. Bailey RM, 2002. Simulations of variability in the luminescence characteristics of natural quartz and its implications for estimates of absorbed dose. Radiation Protection Dosimetry 100(1–4): 33–38.
  • 8. Bailey RM, 2004. Paper I e simulation of dose absorption in quartz over geological timescales and its implications for the precision and accuracy of optical dating. Radiation Measurements 38: 299–310, DOI 10.1016/j.radmeas.2003.09.005.
  • 9. Bailey RM and Arnold LJ, 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25: 2475–2502, DOI 10.1016/j.quascirev.2005.09.012.
  • 10. Banerjee D, 2000. Thermal transfer and recuperation in quartz OSL and their consequences regarding optical dating procedure. In: Murthy KVR et al., eds., Luminescence and its applications. Luminescence Society of India C 1/2000: 86–93.
  • 11. Bateman MD, Frederick CD, Jaiswal MK and Singhvi AK, 2003. Investigations into the potential effects of pedoturbation on luminescence dating. Quaternary Science Reviews 22: 1169–1176, DOI 10.1016/S0277-3791(03)00019-2.
  • 12. Bateman MD, Boulter CH, Carr AS, Frederick CD, Peter D and Wilder M, 2007. Detecting Post-depositional sediment disturbance in sandy deposits using optical luminescence. Quaternary Geochronology 2(1–4): 57–64, DOI 10.1016/j.quageo.2006.05.004.
  • 13. Bateman MD, Boulter CH, Carr AS, Frederick CD, Peter D and Wilder M, 2007b. Preserving the palaeoenvironmental record in drylands: bioturbation and its significance for luminescence-derived chronologies. Sedimentary Geology 195: 5–19, DOI 10.1016/j.sedgeo.2006.07.003.
  • 14. Berberian M, 1983. The southern Caspian: a compressional depression floored by atrapped, modified oceanic crust. Canadian Journal of Earth Sciences 20: 163–183, DOI 10.1139/e83-015.
  • 15. Berberian M, Qorashi M, Arzhang-ravesh B and Mohajer-Ashjai A, 1985. Recent tectonics, seismotectonics and earthquake-fault hazard investigation in the Greater Tehran region: contribution to the seismotectonics of Iran, part V. Geological Survey of Iran, Report No. 56 ([in Persian], 316 pp.).
  • 16. Berberian M and Yeats RS, 1999. Patterns of historical earthquake rupture in the Iranian plateau. Bulletin of the Seismological Society of America 89: 120–139.
  • 17. Bøtter-Jensen L, Solongo S, Murray AS, Banerjee D and Jungner H, 2000. Using the OSL single-aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry. Radiation Measurements 32: 841–845, DOI 10.1016/S1350-4487(99)00278-4.
  • 18. Jackson J, Priestley K, Allen M and Berberian M, 2002. Active tectonics of the South Caspian Basin. Geophysical Journal International 148: 214–245, DOI 10.1046/j.1365-246X.2002.01588.x.
  • 19. David B, Roberts RG, Magee J, Mialanes J, Turney C, Bird M, White C, Fifels LK and Tibby J, 2007. Sediment mixing at Nonda Rock: investigations of stratigraphic integrity at an early archaeological site in northern Australia and implications for the human colonisation of the continent. Journal of Quaternary Science 22: 449–479, DOI 10.1002/jqs.1136.
  • 20. Duller GAT, 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25: 15–24.
  • 21. Duller GAT, 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37(4): 589–612, DOI 10.1111/j.1502-3885.2008.00051.x.
  • 22. Duller GAT and Murray AS, 2000. Luminescence dating of sediments using individual mineral grains. Geologos 5: 87–106.
  • 23. Duller GAT, Bøtter-Jensen L and Murray AS, 2000. Optical dating of single sandsized grains of quartz: sources of variability. Radiation Measurements 32: 453–457, DOI 10.1016/S1350-4487(00)00055-X.
  • 24. Fattahi M, Walker R, Hollingsworth J, Bahroudi A, Talebian M, Armitage S and Stokes S, 2006. Holocene slip-rate on the Sabzevar thrust fault, NE Iran, determined using Optically-stimulated Luminescence (OSL). Earth and Planetary Science Letters 245: 673–684, DOI 10.1016/j.epsl.2006.03.027.
  • 25. Feathers JK, Holliday VT and Meltzer DJ, 2006. Optically stimulated luminescence dating of Southern High Plains archaeological sites. Journal of Archaeological Science 33: 1651–1665, DOI 10.1016/j.jas.2006.02.013.
  • 26. Galbraith RF and Green PF, 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17(3): 197–206, DOI 10.1016/1359-0189(90)90035-V.
  • 27. Galbraith RF and Laslett GM, 1993. Statistical models for mixed fission track ages. Nuclear Tracks and Radiation Measurements 21: 459– 470, DOI 10.1016/1359-0189(93)90185-C.
  • 28. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41: 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
  • 29. Galbraith RF, Roberts RG and Yoshida H, 2005. Error variation in OSL palaeodose estimates from single aliquots of quartz: a factorial experiment. Radiation Measurements 39: 289–307, DOI 10.1016/j.radmeas.2004.03.023.
  • 30. Galbraith RF and Roberts RG, 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11: 1–27, DOI 10.1016/j.quageo.2012.04.020.
  • 31. Ghassemi M, Fattahi M, Landgraf A, Ahmadai M, Ballato P and Tabatabaei S, 2014. Kinematic links between the Eastern Mosha Fault and the North Tehran Fault, Alborz range, northern Iran. Tectonophysics 622: 81–95, DOI 10.1016/j.tecto.2014.03.007.
  • 32. Jacobs Z, Duller GAT and Wintle AG, 2003. Optical dating of dune sands from Blombos Cave, South Africa: II – single grain data. Journal of Human Evolution 44: 613–623, DOI 10.1016/S0047- 2484(03)00049-6.
  • 33. Jacobs Z, Duller GAT and Wintle AG, 2006. Interpretation of single grain De distributions and calculation of De. Radiation Measurements 41: 264–277, DOI 10.1016/j.radmeas.2005.07.027.
  • 34. Jacobs Z, Wintle AG, Duller GAT, Roberts RG and Wadley L, 2008a. New ages for the post-Howiesons Poort, late and final Middle Stone Age at Sibudu, South Africa. Journal of Archaeological Science 35: 1790–1807, DOI 10.1016/j.jas.2007.11.028.
  • 35. Jacobs Z, Wintle AG, Roberts RG and Duller GAT, 2008b. Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: context, causes and consequences for optical dating of archaeological deposits. Journal of Archaeological Science 35: 1808–1820, DOI 10.1016/j.jas.2007.11.027.
  • 36. Mayya YS, Morthekai P, Murari MK and Singhvi AK, 2006. Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. Radiation Measurements 41: 1032–1039, DOI 10.1016/j.radmeas.2006.08.004.
  • 37. Murray AS and Roberts RG, 1997. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters 152: 163–180, DOI 10.1016/S0012-821X(97)00150-7.
  • 38. Murray AS and Wintle AG, 2003. The single aliquot regenerative dose protocol: 651 potential for improvements in reliability. Radiation Measurements 37: 377–381, DOI 10.1016/S1350-4487(03)00053-2.
  • 39. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73, DOI 10.1016/S1350-4487(99)00253-X.
  • 40. Murray AS and Olley JM, 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 1–16.
  • 41. Nathan RP, Thomas PJ, Jain M, Murray AS and Rhodes EJ, 2003. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation. Radiation Measurements 37: 305–313, DOI 10.1016/S1350-4487(03)00008-8
  • 42. Olley JM, Roberts RG and Murray AS, 1997. Disequilibria in the uranium decay series in sedimentary deposits at Allen’s Cave, Nullarbor Plain, Australia: implications for dose rate determinations. Radiation Measurements 27: 433–443, DOI 10.1016/S1350- 4487(96)00114-X.
  • 43. Olley JM, Caitcheon GG and Roberts RG, 1999. Origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements 30: 207–217, DOI 10.1016/S1350-4487(99)00040-2.
  • 44. Olley JM, Pietsch T and Roberts RG, 2004. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology 60: 337–358, DOI 10.1016/j.geomorph.2003.09.020.
  • 45. Ritz J-F, Nazari H, Ghassemi A, Salamati R, Shafei A, Solaymani S and Vernant P, 2006. Active transtension inside Central Alborz: a new insight into the northern Iran– southern Caspian geodynamics. Geology 34(6): 477–480, DOI 10.1130/G22319.1.
  • 46. Roberts R, Bird M, Olley J, Galbraith R, Lawson E, Laslett G, Yoshida H, Jones R, Fullager R, Jacobsen G and Hua Q, 1998. Optical and radiocarbon dating at Jinmium rock shelter in northern Australia. Nature 393: 358–362, DOI 10.1038/30718.
  • 47. Roberts RG, Galbraith RF, Olley JM, Yoshida H and Laslett GM, 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: part II, results and implications. Archaeometry 41: 365–395, DOI 10.1111/j.1475- 4754.1999.tb00988.x.
  • 48. Roberts RG, Galbraith RF, Yoshida H, Laslett GM and Olley JM, 2000. Distinguishing dose populations in sediment mixtures: a test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz. Radiation Measurements 32: 459–465, DOI 10.1016/S1350-4487(00)00104-9.
  • 49. Roberts RG, Flannery TF, Ayliffe LK, Yoshida H, Olley JM, Prideaux GJ, Laslett GM, Baynes A, Smith MA, Jones R and Smith BL, 2001. New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292: 1888–1892, DOI 10.1126/science.1060264.
  • 50. Sivia DS, Burbidge C, Roberts RG and Bailey RM, 2004. A Bayesian approach to the evaluation of equivalent doses in sediment mixtures for luminescence dating. In: Fischer, R., Preuss, R., von Toussaint, U. (Eds.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. American Institute of Physics Conference Proceedings 735, pp. 305–311.
  • 51. Solaymani Sh, Feghhi Kh, Shabanian E, Abbassi MR and Ritz JF, 2003. Preliminary Paleoseismological Studies on the Mosha Fault at Mosha Valley. International Institute of Earthquake Engineering and Seismology. 89 pp. (in Persian).
  • 52. Solaymani Azad S, Ritz J-F and Abbassi MR, 2011. Left-lateral active deformation along the Mosha–North Tehran fault system (Iran): morphotectonics and paleoseismological investigations. Tectonophysics 497, 1–14, DOI 10.1016/j.tecto.2010.09.013.
  • 53. Spencer JQ, Sanderson DCW, Deckers K, Sommerville AA, 2003. Assessing mixed dose distributions in young sediments identified using small aliquots and a simple two-step SAR procedure: the Fstatistic as a diagnostic tool. Radiation Measurements 37: 425– 431, DOI 10.1016/S1350-4887(03)00064-7.
  • 54. Stokes S, 1992. Optical dating of young (modern) sediments using quartz: results from a selection of depositional environments. Quaternary Science Reviews 11: 153–159, DOI 10.1016/0277- 3791(92)90057-F.
  • 55. Stone AEC and Bailey RM, 2012. The effect of single grain luminescence characteristics on single aliquot equivalent dose estimates. Quaternary Geochronology 11: 68–78, DOI 10.1016/j.quageo.2012.03.014.
  • 56. Thomsen KJ, Murray AS and Bøtter-Jensen L, 2005. Sources of variability in OSL dose measurements using single grains of quartz. Radiation Measurements 39: 47–61, DOI 10.1016/j.radmeas.2004.01.039.
  • 57. Trifonov VG, Hessami KT and Jamali F, 1996. West-Trending Oblique Sinitral-Reverse Fault system in Northern Iran: IIEES Special Publication 75. Tehran, Iran.
  • 58. Yoshida H, Roberts RG, Olley JM, Laslett GM and Galbraith RF, 2000. Extending the age range of optical dating using single ‘supergrains’ of quartz. Radiation Measurements 32: 439–446, DOI 10.1016/S1350-4487(99)00287-5.
  • 59. Wallinga J, Murray AS and Bøtter-Jensen L, 2002. Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry 101: 367–370.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d1cf86d-65ee-4497-a823-625d76afdbfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.