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ABSTRACT

The concept of fractals and their applications for underwater acoustics are discussed. Waves
scattering by a fractal surface is considered. Ray chaos in the case of waves propagation in
inhomogeneous underwater waveguides is discussed. Results of investigation of multifractal
characteristics of flow noise, cavitation noise (acoustic turbulence) and the noise emitted by

elastic structures are given.

INTRODUCTION

Researchers develop various models in
order to "understand” Nature. Geometry occupies
one of central places in these models.
Traditionally the basis for these concepts are
Euclidean lines, circles, spheres, etc. However
everybody understands that geometry of Nature is
more complex than Euclidean concepts.

About 20 years ago V. Mandelbrot got
everybody interested in fractal geometry [1]. The
idea of fractals caught attention of researchers
active in many fields of science. Successful
application of fractal models in physics is due to
the fact that fractal forms are inherent to a huge
number of processes and structures. And this is
not accidental. Many models of rise and growth of
disordered objects of various nature are reduced
finally to the models of percolation transition and
diffusion-restricted aggregation. In the first case a
fractal percolation cluster is formed while in the
second this is a fractal aggregate. Models for
many disordered processes are based on various
cases of random walk or dynamic chaos which
also  have fractal  properties. Essentially,
introduction of the idea of fractals opened an

opportunity for mathematical description of a very
general laws of geometric properties of physical
world and Nature on the whole. Now many
researchers consider Nature to be fractal. There
is nothing surprising in attempts to connect the
idea of fractals with wave processes and
problems of underwater acoustics.

FRACTALS

At the beginning of the century the
concepts of the Hausdorf measure and the
Hausdorf-Besikovich dimension (HBD) existed
in mathematics. The theory of this dimension
was developed in 1920s. It was clear according to
the character of HBD that it is connected with
metrics and not with topology, 1. . with the way
of the set construction. The HBD dimension can
be of any value. This provided an opportunity to
speak about mathematical sets and space of non-
integer dimension.

In mathematics a fractal represents a set
of points in metric space. It is impossible to
establish any traditional measure of integer
dimension for such set, i. e. length, square or
volume (their dimensions are the first, second and
third power of length respectively). For example
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traditional measurements of a fractal curve length
may produce an infinite result, while traditional
measurements of square under it may produce
zero result. The problem of measurements for
such sets is solved with the help the Hausdorf
measure and HBD.

Initially Mandelbrot determined fractal as
a set with HBD greater than the topological
dimension. Later he proposed to change for the
following. The name of fractal is given to a
structure consisting of parts which are similar to
the whole in some sense. Fractal is an object or
structure with a property of scale invariance
(scaling) [1, 2]. They are characterized by fractal
dimension which is not always coincide with
HBD. Cellular and mass fractal dimensions are
used frequently. —They are easily determined
experimentally.

Mathematical, physical and statistical
fractals are considered. The Koch curve, the
Serpinsky carpet and the curve describing the
Brown walk may be an example of fractals of the
first kind. As it is known, such curve is integer
everywhere but not differentiable.  The
Weierstrass-Mandelbrot function is frequently
used for description of a fractal. Physical fractals
have the property of scale invariance in a
restricted interval of scales. They may be
differentiated but the values of derivatives may
be rather large. For statistical physical fractals
the property of scaling exists usually only within
a limited range of scales. Statistical fractals
properties  are characterized by correlation
(structural) functions and their spectra. There
are mass and surface fractals and fractals
arising in turbulent flow. An important feature
of fractal models is power laws of correlation
(structural) functions and their spectra. Lately
fractal models have been used for
consideration of scattering and radiation of waves
by fractal objects and waves propagation in
inhomogeneous and  disordered media (see
reviews in [3-5]).

WAVES SCATTERING BY AN UNEVEN
FRACTAL SURFACE

Angular dependence of intensity of waves
scattered by a large- scale smooth (Euclidean)
surface is determined by the distribution of
surface slopes. A fractal surface cannot be
differentiated and it suggests the presence of
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unevennesses of all scales. It does not have
determined slopes. Thus, strictly speaking, neither
the Kirchhof approximation (tangent plane) nor
the perturbation method may be applied for
determination of scattered field. Probably this is
the reason why diffraction of a plain wave
coming through a phase screen was considered in
one of the first papers [6] instead the problem of
scattering by a rough surface. Wave thickness of
the screen was determined by a product of
surface height and wave number of an incident
wave. A surface with the structure of generalized
Gaussian fractai with the structural function of
a surface random fractal. It is demonstrated that
angular dependence of wave intensity after the
screen comcides with the density of stable
according to Levi distribution. The Levi statistics
(othe Levi flights”) are characterized by the
property of scale invariance and plays an
important role in the fractal theory. Statistical
characteristics in the case of waves scattering by
screens with the Gaussian random fractal phase
have been considered also in [7]. In particular, a
subfractal surface with a fractal structural
function of slopes was used as a model. Such
surface may be differentiated and has slopes
changing from point to point continuously.

Real surfaces are scale invariant within a
limited range of scales and in the majority of cases
they may be considered as random fractal
surfaces. Sea waves have fractal properties in
both cases of determined [8] and random waves
[9, 10]. Wind waves create random fractal sea
surface within the scale of 0.1 - 100 m with the
fractal dimension D=2.25 [9]. The ocean floor is
fractal [9].

Authors of some papers considered waves
scattering by a large-scale fractal surface which
was described by the “shortened” Weierstrass-
Mandelbrot  function.  Unevennesses  were
considered to be slope and large in comparison
with the wavelength. Such surface cannot be
differentiated only in a limited number of points.
The Kirchhof approximation and surface fractal
(power) structural function were used. For
example, it was demonstrated in [11] if the fractal
dimension of the surface was increased, angular
characteristics of fluctuations intensity of
scattered field were broadened and the amplitudes
of peaks of the angular dependence of intensity
decreased. The slope angle of the tangent to these
peaks increases with the increase of fractal



dimension. However the average intensity of field
fluctuations and average field in the mirror
direction do not depend on the fractal dimension
and are determined by the average square value of
surface shifts. The field of a laser harmonic sound
source at a random large- scale fractal statistically
homogeneous isotropic surface with slope
unevennesses was considered in [12]. It was
demonstrated that the angular dependence of
average intensity of field fluctuations was
broadened and the value of field fluctuations
intensity decreased with the increase of fractal
dimension of the surface.

PROPAGATION OF WAVES IN
INHOMOGENEOUS AND DISORDERED
MEDIA

Fractal structures may be observed in the
ray pattern in a longitudinally inhomogeneous
waveguide. The study of these effects is based on
the representation of ray equations in the
Hamiltonian form and the analogy with the results
of nonlinear Hamiltonian dynamics [13].

A model of a waveguide filled with a
homogeneous media and with completely
reflecting walls is has been considered in [14].
One wall is periodically uneven. Rays in such
waveguide propagate being alternatingly reflected
by walls. Rays propagation is described by a
nonlinear image determining the angle and
longitudinal coordinate of ray reflection from a
plane wall through the angle and longitudinal
coordinate of the preceding reflection from the
wall. If uncvennesses are absent, the length of ray
cycle is constant. If one of the walls is periodically
uneven then rays oscillate. An uneven wall
influences most strongly the rays which are in
nonlinear resonance with the period of
unevennesses. Ray dynamics becomes chaotic
with inherent to chaos fractal properties of phase
portrait in the case of overlapping resonances.
Ray chaos in an acoustic waveguide in shallow
sea with periodically uneven floor is considered in
[14]. Ray chaos arises in the case of sufficiently
small angles of outcoming rays. Apparently,
conditions for appearance of chaotic (fractal)
dynamics of rays in deep-water ocean waveguides
were considered for the first time in [15].
Consideration of chaotic ray dynamics in the case
of acoustic signals propagation in the ocean is
given in [16]. The study is based on the eikonal

equation in the Hamiltonian form. The necessary
condition for chaotic behavior of rays is local
instability of these equations solutions. It is
demonstrated that the condition for local
instability is satisfied in the case of small
longitudinal disturbance (which may be caused for
example by internal waves in the ocean) in a
double-axis underwater acoustic  channel.
Numeric solution of the equations for a typical
sound channel in the Northern Athlantics
confirmed this result. Thus, ray chaos and fractal
properties of signals may turn out to be typical
for ocean acoustics.

The results given above are valid for the
case of two-dimensional waveguides. The
situation is changed qualitatively in the case of
three-dimensional problems if two-dimensional
inhomogeneity is taken into account. Diffusion in
phase space (the Amold diffusion) becomes
possible from the point of view of dynamic ray
chaos. Three-dimensional effects were considered
recently in [17] for the case of bottom. ocean
waveguide with uneven floor. Rays diffusion
consists qualitatively of random changes of rays
propagation direction along the route in the
horizontal plane. It is noted that any direction is
possible, including the direction opposite to the
initial one.

Let us stress that fractal ray dynamics
arises not in a randomly inhomogeneous medium.
Longitudinal disturbances may have quite a
regular character. There is nothing surprising in
this. It is well known now that chaotic oscillations
may arise in nonlinear regular dynamic systems
under the effect of non- regular forces [18].

Investigation of fractal characteristics of
acoustic waves propagation in disordered
statistically inhomogeneous media is based on the
analysis of solutions of the Helmholz equation
first of all. The basis for consideration is the
Born approximation as a rule, though multiple
scattering of waves by fractals have been
considered too. Models of media with mass and
surface fractals as well as with fractals caused by
medium turbulence have been used. Medium
fractal properties have been characterized by
correlation (structure) functions and their spectra.
One of major goals for this research has been
clearing out of spectral (frequency) laws of waves
attenuation caused by sound scattering by medium
fractal structures. It is known that sound waves
attenuation is governed by an exponential law
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with the index depending on frequency according
to a power law. This index has whole values for
classical mechanisms of attenuation. For
example, attenuation caused by the Rayleigh
scattering has the index equal to 4. It 1is
demonstrated in [19] that the index value may
serve as a measure for density of scattering objects
in an inhomogeneous medium, and in the case of
Sl . the SRS YA SOURES
ideas have been discussed in [20] in connection
with seismic acoustic waves propagation in the
Earth lithosphere. Analogous estimations of
acoustic signals attenuation in the ocean are
unknown to us.

Transversal shift and broadening of a
wave beam in an acoustic medium with small-
scale and fractal unevennesses have been studied
numerically in [21]. A parabolic equation has
been used. The medium is characterized by
inhomogeneities changing smoothly along the
direction of waves propagation and short-
correlated in the transversal direction. Fractal
broadening and shift of the beam have been
considered.

FLOW NOISE

Application of fractal concept to the
problem of noise and vibration was discussed in
[22]. Flow noise is caused by nonstationary
turbulent motion of liquid particles in the
boundary layer, wake flow and in general around
a body when it moves in a liquid. Flow noise
increases rapidly with the increase of motion
velocity and becomes dominating fast. Turbulence
is a classic example of chaotic oscillations arising
in regular nonlinear systems. Mandelbrot was
apparently the first who connected turbulence with
the idea of fractal [1, 23]. However it is necessary
to note that as long ago as in 1926 Richardson
suggested to use the Weierstrass function as a
model for description of turbulence [24]. Fractal
properties of turbulence are evident already from
the fact that the famous Kolmogorov law
characterizing the spectrum of turbulence in the
inertial interval has power dependence with a
non-integer exponent. An important property of
turbulence is intermittence. This phenomenon is
strongly connected with the idea of multifractal
and singularities spectrum. A multifractal is a
composition of fractal sets of various dimensions
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[2, 25]. Singularities spectrum  carries
information on the local structure of a process in
time and space. Multifractal analysis gives
sensible “squeeze” from information on different
degree moments of a two-point probabilities
distribution.

Noise of turbulent boundary layer (TBL)
is usually connected with wall pressure pulsations.
'Im}tlz ti rélgla%rty oz{‘ndDur]warsa‘l1 %(/i 0 ﬁtg'mm%ée
of wall pressure pulsations in TBL in the case of
liquid flow in a pipe. It was demonstrated the
pulsations intermittence was caused by
intermittent character of fturbulent energy
production in TBL in the process of development
of coherent structures, i. e. turbulent splashes”.

The rise of cavitation bubbles and
developed cavitation is possible in TBL under
certain conditions. Bubbles which oscillate and
collapse, create cavitation noise. This noise is
sometimes  called acoustic turbulence. This
indicates the chaotic nature of cavitation noise
and its fractal properties. Really, a nonlinearly
oscillating bubble in a liquid is a typical
example of a nonlinear dynamic system with
chaotic behavior [27]. Nonlinear behavior of a
bubble in water, development of chaos according
to the Feigenbaum “scenario”, fractal and other
characteristics of acoustic turbulence were
discussed in [27, 18].

NOISE EMITTED BY ELASTIC
STRUCTURES

At least three cases are possible here.
First, an elastic structure may oscillate under the
effect of external fractal forces. An example of
the last may be wall pressure pulsations in TBL.
In the second case external forces are regular but
the structure (a plate or a shell) has fractal
characteristics. Finally, it is possible that an
elastic body in a flow of liquid or gas performs
nonlinear chaotic oscillations [18].

Sound radiation by a plane layered
elastic structure oscillating under the effect of
random statistically homogeneous fractal forces
was considered in [28]. It was demonstrated that
fractal dimension of average intensity of radiation
field fluctuations in the far wave field coincides
with fractal dimension of extemnal forces. This
indicates the opportunity to determine fractal
dimension of external forces by the analysis of



characteristics of sound radiated by the structure.
In this connection one may expect that the
acoustic field radiated by a wall oscillating under
the effect of wall pressure pulsations in TBL has
the singularities spectrum analogous to the
singularities spectrum of wall pulsations. The
influence of fractal inhomogeneities of a thin
elastic plate on the sound field radiated by it was
considered in {29].

CONCLUSION

Wave theory is rich with deep resuits and
developed theoretical methods. It is based
essentially on models of continuous medium and
uses mathematics dealing mostly with “smooth”
functions. The concept of physical and statistical
fractals allows to characterize quantitatively wave
phenomena including those in underwater
acoustics in a new way utilizing already
developed methods of wave theory. However,
application of fractal models may produce
essentially new results. This concerns the theory
of fractons. This theory solves the problem of
wave propagation in inhomogeneous and
disordered media which cannot be described by
models of continuous media (for example see
{4]). Application of this theory to underwater
acoustics problems may produce unexpected
results for example in the process of development
of sound absorbers and sound and vibration
insulators. However these problems expect their
own researchers.

Here we practically did not consider two
important problems, i. e. the theory of fractons
and application of R-S analysis, multifractal
analysis and wavelets analysis in underwater

signal processing.
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