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ABSTRACT

The concept of fracta1s and their applications for underwater acoustics are discussed. Waves
. scattering by a fraetal surface is considered. Ray chaos in the case of waves propagation in
inhomogeneous underwater waveguides is discussed. Results of investigation of multifractał
characteristics of flow noise, cavitation noise (acoustic turbulence) and the noise emitted by
elastic structures are given.

lNTRODUCTION

Researchers develop various models in
order to "understand" Nature. Geometry occupies
one of central places in these models.
Traditionally the basis for these concepts are
Euclidean łines, circles, spheres, etc. However
everybodyunderstands that geometry ofNature is
more complex than Euclidean concepts.

About 20 years ago V. Mandelbrot got
everybody interested in fraetal geometry [l]. The
idea of fraetals caugbt attention of researchers
active in many fields of science. Successful
application of fraetal models in physics is due to
the fact that fraetal forms are inherent to a huge
number of processes and structures. And this is
not accidental. Many models of rise and growth of
disordered objects of various nature are reduced
finally to the models of percolation transition and
diffusion-restrictedaggregation. In the first case a
fractal percolation eluster is formed while in the
second tnts is a fractal aggregate. Models for
many disordered processes are based on various
cases of random walk or dynamie chaos which
also have fractal properties. Essentially,
introduction of the idea of fraetals opened an

opportunity for mathematical descriptionof a very
generał laws of geometrie properties of physical
world and Nature on the whole. Now many
researchers consider Nature to be fraetal. There
is nothing surprising in attempts to connect the
idea of fractals with wave processes and
problems of underwater acoustics.

FRACTALS

At the beginning of the century the
concepts of the Hausdorf measure and the
Hausdorf-Besikovich dimension (HBD) existed
in mathematics. The theory of this dimension
was developedin 1920s. It was elear according to
the character of HBD that it is connected with
metrics and not with topology, i. e. with the way
of the set construction. The HBD dimension can
be of any value. This provided an opportunity to
speak about mathematical sets and space of non-
integerdimension.

In mathematics a fractal represents a set
of points in metric space. It is impossible to
establish any traditional measure of integer
dimension for such set, i. e. length, square or
volume (their dimensionsare the first, second and
third power of length respectively).For exarnple
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traditional measurements of a fraetal curve length
may produce an infmite resuIt, while traditional
measurements of square under it may produce
zero result. The problem of measurements for
sueh sets is solved with the help the Hausdorf
measure and HBO.

Initially Mandelbrot determined fraetal as
a set with HBO greater than the topological
dimension.Later he proposed to change for the
following. The name of fraetal is given to a
structure consisting of parts which are similar to
the whole in some sense. Fractal is an object or
structure with a property of scale invariance
(scaling) [l, 2]. Theyare characterized by fraetal
dimension which is not always coincide with
HBD. Cellular and mass fraetal dimensions are
used frequently. They are easily determined
experimentally.

Mathematical, physical and statistical
fraetals are considered. The Koch eurve, the
Serpinsky carpet and the curve describing the
Brown walk may be an example of fractals of the
first kind, As it is known, such curve is integer
everywhere but not differentiable. The
Weierstrass-Mandelbrot function is frequently
used for description of a fraetal. Physical ftaetals
have the property of scale invariance in a
restricted interval of scales. They may be
differentiated but the values of derivatives may
be rather large. For statistical physical fraetals
the property of scaling exists usually on1ywithin
a limited range of scales. Statistical fractals
properties are eharacterized by correlation
(structural) functions and their spectra. There
are mass and surface fracta1s and fraetals
arising in turbulent tlow. An important feature
of fraetal models is power laws of correlation
(structural) functions and their spectra. Lately
fractal models have been used for
considerationof scattering and radiation of waves
by fraetal objects and waves propagation in
inhomogeneous and disordered media (see
reviews in [3-5]).

WAVES SCATIERING BY AN UNEVEN
FRACTAL SURFACE

Angular dependenceof intensity of waves
scattered by a łarge- scale smooth (Euclidean)
surface is determined by the distribution of
surface slopes. A fractal surface cannot be
differentiated and it suggests Lite presence of
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unevennesses of all scales. It does not have
determinedslopes. Thus, strictly speaking, neither
the Kirchhof approximation (tangent pIane) nor
the perturbation method may be applied for
determination of scattered field. Probably this is
the reason why diffraction of a plain wave
coming through a phase sereen was considered in
one of the first papers [6] instead the problem of
scattering by a rough surface. Wave thickness of
the screen was determined by a produet of
surface height and wave number of an incident
wave. A surface with the structure of generalized
Gaussian fraetal with the structural function of
a surface random fractal. It is demonstrated that
angular dependence of wave intensity after the
screen coincides with the density of stable
according to Levi distribution. The Levi statistics
("the Levi flights") are characterized by the
property of scale invariance and plays an
important role in the ftactal theory. Statistical
characteristics in the case of waves scattering by
sereens with the Gaussian random fractal phase
have been considered also in [7]. In particular, a
subfractal surface with a fractal structural
function of slopes was used as a model. Such
surface may be differentiated and bas slopes
changingfrom point to point continuously.

Real surfaces are scale invariant within a
limited range of scales and in the majority of cases
they may be considered as random ftactal
surfaces. Sea waves have fractal properties in
both cases of determined [8J and random waves
[9, 10]. Wind waves create random traćtal sea
surface within the scale of 0.1 - 100 m with the
fractal dimension 0=2.25 [9]. The ocean f100ris
fraetal [9].

Authors of somepapers consideredwaves
scattering by a large-scale fractal surface which
was described by the "shortened" Weierstrass-
Mandelbrot function. Unevennesses were
considered to be slope and large in comparison
with the wavelength. Such surface cannot be
differentiatedonly in a limited number of points.
The Kirchhof approximation and surface fractal
(power) structuraI function were used. For
example, it was demonstrated in [11] if the fraetal
dimensionof the surface was increased, angular
eharaeteristies of fluctuations intensity of
scattered field were broadened and the amplitudes
of peaks of the angular dependence of intensity
decreased. The slope angle of the tangent to these
peaks increases with the increase of fractal



dimension. However the average intensity of field
fluctuations and average field in the mirror
direction do not depend on the fraetal dimension
and are determined by the average square value of
surface shifts. The field of a laser harmonie sound
source at a random large- scale fractal statistically
homogeneous isotropie surface with slope
unevennesses was considered in [12]. It was
demonstrated that the angular dependence of
average intensity of field fluctuations was
broadened and the value of field fluctuations
intensity decreased with the increase of fraetal
dimension of the surface.

PROPAGA nON
INHOMOGENEOUS
MEDIA

OF
AND

WAVES IN
DISORDERED

Fractal structures may be observed in the
ray partem in a longitudinally inhomogeneous
waveguide. The study of these effects is based on
the representation of ray equations in the
Hamiltonian form and the analogy with the results
of nonlinear Hamiltonian dynamics [13].

A model of a waveguide filled with a
homogeneous media and with completely
reflecting walls is has been considered in [14].
One wall is periodically uneven. Rays in such
waveguide propagate being altematingly reflected
by walls. Rays propagation is described by a
nonlinear image determining the angle and
łongitudina1 coordinate of ray reflection from a
plane wall through the angle and longitudinał
coordinate of the preceding reflection from the
wall. If unevennesses are absent, the length of ray
cycle is constant. If one ofthe walls is periodically
uneven then rays oscillate. An uneven wall
influences most strongly the rays which are in
nonlinear resonance with the period of
unevennesses. Ray dynamics becomes chaotic
with inherent to chaos fraetal properties of phase
portrait in the case of overlapping resonances.
Ray chaos in an acoustic waveguide in shallow
sea with periodicalIy uneven floor is considered in
[14]. Ray chaos arises in the case of sufficient1y
small angles of outcoming rays. Apparently,
conditions for appearance of chaotic (fractal)
dynamics of rays in deep-water ocean waveguides
were considered for the first time in [15].
Consideration of chaotic ray dynamics in the case
of acoustic signals propagation in the ocean is
given in [16]. The study is based on the eikonal

equation in the Hamiltonian form. The necessary
condition for chaotie behavior of rays is local
instability of these equations solutions. It is
demonstrated that the condition for local
instability is satisfied in the case of smalI
longitudinal disturbanee (which may be caused for
example by intemal waves in the ocean) in a
double-axis underwater acoustic channel.
Numeric solution of the equations for a typical
sound channel in the Northern Athlantics
confirmed this result, Thus, ray chaos and fraetal
properties of signals may tum out to be typical
for ocean acoustics.

The results given above are valid for the
case of two-dimensional waveguides. The
situation is ehanged qualitatively in the case of
three-dimensional problems if two-dimensional
inhomogeneity is taken into aecount. Diffusion in
phase space (the Arnold diffusion) becomes
possible from the point of view of dynamie ray
chaos. Three-dirnensional effects were considered
recentły in [17] for the case of bottom ocean
waveguide with uneven floor. Rays diffusion
consists qualitatively of random changes of rays
propagation direction along the route in the
horizontal pIane. It is noted that any direetion is
possible, including the direction opposite to the
initial one.

Let us stress that fraetal ray dynamics
arises not in a randomly inhomogeneous medium.
Longitudinal disturbances may have quite a
regular character. There is nothing surprising in
this. It is well known now that chaotie oseillations
may arise in nonlinear regular dynamie systems
under the effect of non- regular forces [18].

Investigation of fractal characteristics of
acoustic waves propagation in disordered
statistically inhomogeneous media is based on the
analysis of solutions of the Helmholz equation
first of alt The basis for consideration is the
Bom approximation as a rule, though multiple
scattering of waves by fractals have been
considered 100. Models of media with mass and
surface fractals as well as with fractals caused by
medium turbulence have been used. Medium
fractal properties have been characterized by
correlation (structure) functions and their spectra.
One of major goals for this research has been
clearing out of spectra! (frequency) laws of waves
attenuation caused by sound scattering by medium
fraetal structures. It is known that sound waves
attenuation is govemed by an exponential law
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with the index depending on frequency according
to a power law. This index bas whole values for
classical mechanisms of attenuation. For
example, attenuation caused by the Rayleigh
scattering bas the index equal to 4. It is
demonstrated in [19] that the index value may
serveas a measure for density of scattering objects
in an inhomogeneousmedium, and in the case of
a .disordęred medium the index value co~des
Willi tne traetat dimensiori óffhe medium. These
ideas have been discussed in [20] in connection
with seismic acoustic waves propagation in the
Earth lithosphere. Ana1ogous estimations of
acoustic signa1s attenuation in the ocean are
unknownto us.

Transversal shift and broadening of a
wave beam in an acoustic medium with small-
scale and fractal unevennesseshave been studied
numerically in [21]. A parabolic equation bas
been used. The medium is characterized by
inhomogeneities changing smoothly along the
direction of waves propagation and short-
correlated in the transversal direction. Fraetal
broadening and shift of the beam have been
considered.

FLOWNOISE

Application of fraetal concept to the
problem of noise and vibration was discussed in
[22]. Flow noise is caused by nonstationary
turbulent motion of liquid particles in the
boundary layer, wake flow and in general around
a body when it moves in a liquid. Flow noise
increases rapidly with the increase of motion
velocityand becomes dominating fast. Turbulence
is a elassie example of chaotic oscillationsarising
in regular nonlinear systems. Mandelbrot was
apparently the first who connectedturbulence with
the idea offracta1 [1, 23]. However it is necessary
to note that as long ago as in 1926 Richardson
suggested to use the Weierstrass function as a
model for description of turbulence [24]. Fraetal
properties of turbulence are evident already from
the fact that the famous Kolmogorov law
characterizing the spectrum of turbulence in the
inertial interval bas power dependence with a
non-integer exponent. An important property of
turbulence is intermittence. This phenomenon is
strongly connected with the idea of multifraetal
and singularities spectrum. A multifracta1 is a
composition of fraetal sets of various dimensions
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[2, 25]. Singularities spectrum carries
information on the local structure of a process in
time and space. Multifracta1 ana1ysis gives
sensible "squeeze" from information on different
degree moments of a twe-point probabilities
distribution.

Noise of turbuIent boundary layer (TBL)
is usually connectedwith wall pressure pulsations.
The author of [261. studied ęxpęrimęntally
multifraetalIty and urliversality ot mtermittence
of wall pressure pulsations in TBL in the case of
liquid flow in a pipe. It was demonstrated the
pulsations intermittence was caused by
intermittent character of turbulent energy
production in TBL in the process of development
of coherent structures, i. e. turbulent "splashes".

The rise of cavitation bubbles and
developed cavitation is possible in TBL under
certain conditions. Bubbles which oscillate and
collapse, create cavitation noise. This noise is
sometimes called acoustic turbulence. This
indicates the chaotic nature of cavitation noise
and its fracta1 properties. Really, a nonlinearly
oscillating bubble in a liquid is a typical
example of a nonlinear dynamie system with
chaotic behavior [27]. Nonlinear behavior of a
bubble in water, development of chaos according
to the Feigenbaum "scenario", fractal and other
characteristics of acoustic turbulence were
discussedin [27, 18].

NOISE EMITTED BY ELASTIC
STRUCTURES

At 1east three cases are possible here.
First, an elastic structure may oscillate under the
effect of externaI fracta1 forces. An example of
the last may be wall pressure pulsations in TBL.
In the second case external forces are reguIar but
the structure (a plate or a shell) has fractal
characteristics. Finally, it is possible that an
elastic body in a flow of liquid or gas performs
nonlinear chaotic oscillations [18].

Sound radiation by a pIane layered
e1astic structure oscillating under the effect of
random statistically homogeneous fraetal forces
was consideredin [28]. It was demonstrated that
fracta1dimensionof average intensity of radiation
field fluctuations in the far wave field coincides
with fracta1 dimension of extemal forces. This
indicates the opportunity to determine fraetal
dimension of externa1 forces by the analysis of



characteristics of sound radiated by the structure.
In this connection one may expect that the
acoustie field radiated by a wall oscillating under
the effect of wall pressure pulsations in TBL bas
the singularities spectrum anaIogous to the
singularities speetrum of wall pulsations. The
influence of fraetal inhomogeneities of a thin
elastic plate on the sound field radiated by it was
eonsidered in [29].

CONCLUSION

Wave theory is rich with deep results and
developed theoretical methods. It is based
essentially on models of continuous medium and
uses mathematics dealing mostly with "smooth"
functions. The concept of physical and statistical
fractals allows to characterize quantitatively wave
phenomena including those in underwater
acoustics in a new way utilizing already
developed methods of wave theory. However,
application of fraetal models may produce
essentialły new results. This concerns the theory
of fractons. This theory solves the problem of
wave propagation in inhomogeneous and
disordered media whieh cannot be described by
models of continuous media (for example see
[4]). Application of this theory to underwater
acoustics problems may produce unexpected
results for example in the process of development
of sound absorbers and sound and vibration
insulators. However these problems expect their
own researehers.

Here we practically did not consider two
important problems, i. e. the theory of fractons
and application of R-S analysis, multifraetal
analysis and wavelets analysis in underwater
signal processing.
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