Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With both the ecological and economical aspect of fossil fuels as a source of energy, the demand for renewable sources is rising. This paper aims to analyse two scenarios, which would benefit from the use of a photovoltaic system. In the first scenario, a strategically important warehouse is analysed, and a photovoltaic system is designed and simulated. In the second scenario, two designs of photovoltaic systems that could be used in mobile applications by first responders, military command centres, or during natural disasters are proposed. The results of the simulations are discussed and may serve as a basis for real-life system design and application.
Wydawca
Czasopismo
Rocznik
Tom
Strony
81--92
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
- Brno University of Technology, 10 Technická, 616 00 Brno, Czech Republic
autor
- University of Defence, 65 Kounicova, 662 10 Brno, Czech Republic
autor
- Brno University of Technology, 10 Technická, 616 00 Brno, Czech Republic
Bibliografia
- [1] K.A. Makinde, O.B. Adewuyi, A.O. Amole, O.A. Adeaga, Design of Grid-connected and Stand-alone Photovoltaic Systems for Residential Energy Usage: A Technical Analysis, J. Energy Res. Rev. (2021) 34–50. https://doi.org/10.9734/jenrr/2021/v8i130203.
- [2] Renewable Energy Market Update, Renew. Energy Mark. Updat. (2022).
- https://doi.org/10.1787/faf30e5a-en.
- [3] S. Qazi, Mobile Photovoltaic Systems for Disaster Relief and Remote Areas, in: Standalone Photovolt. Syst. Disaster Reli. Remote Areas, Elsevier, 2017: pp. 83–112. https://doi.org/10.1016/b978-0-12-803022-6.00003-4.
- [4] Solarni Asociace, Mobilní Alfons dodává elektřinu ze slunce nejen armádě, (2015). https://www.solarniasociace.cz/cs/aktualne/2838-mobilni-alfons-dodava-elektrinu-ze-slunce-nejen-armade.
- [5] Multicon Solar container, (2022). https://solarcontainer.info/home-2/energy-power-rack.html.
- [6] J. Šiška, Solární proud (nejen) pro německou armádu.
- [7] K. Prompinit, B. Plangklang, S. Hiranvarodom, Design and construction of a mobile PV hybrid system prototype for isolated electrification, Procedia Eng. 8 (2011) 138–145. https://doi.org/10.1016/j.proeng.2011.03.025.
- [8] A. Borodinecs, D. Zajecs, K. Lebedeva, R. Bogdanovics, Mobile Off-Grid Energy Generation Unit for Temporary Energy Supply, Appl. Sci. 12 (2022) 673. https://doi.org/10.3390/app12020673.
- [9] J. Franceschi, J. Rothkop, G. Miller, Off-grid solar PV power for humanitarian action: From emergency communications to refugee camp micro-grids, Procedia Eng. 78 (2014) 229–235. https://doi.org/10.1016/j.proeng.2014.07.061.
- [10] J. Černý, Organizační a velitelské struktury a jejich vliv na organizaci velení a řízení vojsk u brigádního úkolového uskupení, Econ. Manaement. 02/2010 (2010).
- [11] K. Lewczuk, M. Kłodawski, P. Gepner, Energy consumption in a distributional warehouse: A practical case study for different warehouse technologies, Energies. 14 (2021) 2709. https://doi.org/10.3390/en14092709.
- [12] U.S.Energy Information Administration, COMMERCIAL BUILDINGS ENERGY CONSUMPTION SURVEY (CBECS): Table PBA4. Electricity consumption totals and conditional intensities by building activity subcategories, (2012). https://www.eia.gov/consumption/commercial/data/2012/c&e/cfm/pba4.php.
- [13] Fenix Group, Elektrické vytápění při revitalizaci průmyslových objektů, (2012).
- [14] Solar+Diesel Generator Solution, (2022). https://pl.goodwe.com/solar-diesel-generator-solution.
- [15] CanadianSolar solar panel datasheet, (2022). https://static.csisolar.com/wp-
- content/uploads/2020/10/06153233/CS-Datasheet-HiKu7_CS7L-MS_v2.4_EN.pdf.
- [16] GoodWe MT series datasheet, (2022). https://en.goodwe.com/Ftp/EN/Downloads/Datasheet/GW_MT_Datasheet-EN.pdf.
- [17] Nato, New NATO scientific project to reduce energy consumption of deployable camps, (2018).
- [18] T.M. Yunus Khan, M.E.M. Soudagar, M. Kanchan, A. Afzal, N.R. Banapurmath, N. Akram, S.D. Mane, K. Shahapurkar, Optimum location and influence of tilt angle on performance of solar PV panels, J. Therm. Anal. Calorim. 141 (2020) 511–532. https://doi.org/10.1007/s10973-019-09089-5.
- [19] O. Shavolkin, I. Shvedchykova, J. Gerlici, K. Kravchenko, F. Pribilinec, Use of Hybrid Photovoltaic Systems with a Storage Battery for the Remote Objects of Railway Transport Infrastructure, Energies. 15 (2022) 4883. https://doi.org/10.3390/en15134883.
- [20] L. Zhang, Z. Chen, H. Zhang, Z. Ma, B. Cao, L. Song, Accurate study and evaluation of small PV power generation system based on specific geographical location, Energy Eng. J. Assoc. Energy Eng. 117 (2020) 453–470. https://doi.org/10.32604/EE.2020.013276.
- [21] M. Roser, H. Ritchie, CO₂ and Greenhouse Gas Emissions - Our World in Data, Our World Data. (2020). https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#future-emissions.
- [22] K. Komoto, H. Uchida, M. Ito, K. Kurokawa, A. Inaba, Estimation of energy payback time and CO2 emission of various kinds of pv systems, in: 23rd Eur. Photovolt. Sol. Energy Conf. Exhib., 2008: pp. 3833–3835.
- [23] M. Simón-Martín, M. Díaz-Mediavilla, C. Alonso-Tristán, T. García-Calderón, M.C. Rodríguez-Amigo, Grid Connected PV Systems: Energy Payback Time Analyisis, in: 5th Int. Conf. Sustain. Energy Environ. Prot., Dublin, 2012: pp. 174–179. https://doi.org/10.13140/2.1.5180.6089.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d15569a-e3ee-4b06-9f6b-cb439706f23a