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In this paper, to solve the problem of control of a robotic manipulator’s movement with holonomical 

constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a 
combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the 
approximation of the nonlinearity of the robotic manipulator’s dynamic to generate a compensatory control. The 
control system is designed in such a way as to permit modification of its properties under different operating 
conditions of the two-link manipulator. 
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1. Introduction  

 
 The issue of the constrained control of manipulator, often finds practical applications in robotised 

industrial processes (Gierlak, 2014; 2013). If an end-effector of the manipulator comes in contact with an 
environment, the interacting forces are very important. These forces are generated at the contact point and 
are normal or tangential to the contact surface. In order to correct the realisation of the control process, 
interacting forces, normal to the contact surface, must be controlled. Simultaneously, the movement of the 
end-effector on the contact surface is realised. This leads to the hybrid position-force control method 
(Gierlak, 2012; 2013). 

 Robotic manipulators are systems with nonlinear dynamic descriptions, in which the problem of 
uncertainty modelling occurs. In order to realise the control process with good quality, the control law should 
take into account the compensation of object nonlinearities (Gierlak, 2012). At present, there are many 
modern control techniques for nonlinear systems, which base on the theory of adaptive (Chen and Billings, 
1996; Gierlak, 2013; Kumar et al., 2011) and robust systems. They are particularly useful in cases of control 
issues such as the one analyzed in this article. 

 In this paper, to solve the problem of the constrained motion control of a robot, an intelligent control 
system understood as hybrid combination of fuzzy logic and artificial neural networks was used. The 
purpose of the neuro-fuzzy system is to approximate the manipulator’s dynamic nonlinearities in order to 
generate the compensatory control. The control system is designed to keep modifying its properties under 
different operating conditions of the two-link manipulator. Simulation studies have been carried out for the 
case when the end-effector of the manipulator moves along a circular path and puts pressure on the contact 
surface. 
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2. Description of control object 
 

 The control object is a two-link manipulator, schematically presented in Fig.1. 
 

 
 

Fig.1. The two-link constrained manipulator. 
 

 The kinematics of the manipulator is described by the following equation 
 

   
cos cos

sin sin

C 1 1 2 2

C 1 1 2 2

x l q l q

y l q l q

   
        
     

y k q  (2.1) 

 
where q=[q1, q2]

T – the vector of generalised coordinates, l1, l2 – link’s length. Assuming, that the point C 
will remain on the surface, it is described in the following way 
 

    2 2 2
C Cx y R 0   h k . (2.2) 

 
 It is an equation of holonomical constraints imposed on the manipulator’s end-effector, which can be 
written in terms of generalised coordinates 
 

     cos2 2 2
1 2 1 2 1 2l l 2l l q q R 0     h q . (2.3) 

 
 The Jacobian associated with the constraints has the form 
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q
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 Dynamical equations of motion of the manipulator have the following form 
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where ai – parameters dependent on the geometry and mass distribution of links and friction coefficients, u1 
and u2 – driving moments, τd1 and τd2 - disturbance, λ - Lagrange multiplier – in this case, the force normal to 
the constrain surface. In a matrix notation Eq.(2.5) has the form (Lewis, 1999) 
 

             Tt     dM q q C q,q q F q G q u J q       (2.6) 

 
 The imposition of the constraints Eq.(2.3) reduced the number of degrees of freedom of the 
manipulator from 2 to 1, so its movement may be described by using an arbitrarily selected reduced position 
variable θ1=q1. From the assumed constraints the dependent variable takes form 
 

   θ = γ arccos
2 2 2

1 2
2 2 1 1

1 2

R l l
q q q

2l l

 
   ,            2 1q q  ,           2 1q q  . (2.7) 

 
 Some extended Jacobian L, that defines the relations between velocities of the unconstrained and 
constrained system, has the form 
 

   θ θγ
θ

1 11
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q
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 In the case presented here L=[1, 1]T. Substituting γ(q1) and Eq.(2.8) to Eq.(2.5), yielded 
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where 
2 2 2
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1 2

R l l
h

2l l

 
 . Multiplying Eq.(2.9) by LT and taking into account that JL=0, we can write 
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and in the matrix notation 
 

  θ θ     T
1 1 1 dM V F G L u    (2.11) 
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where 1 2T
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u . The above equation describes the motion on the contact surface, but it 

must be noted that it has no information about the downforce. 
 

3. Position-force control 
 

 The purpose of the hybrid position-force control is the realisation of the desired positional trajectory 
θ1d(t) and the desired force trajectory λd(t). Defining the motion error eθ, a filtered motion error s, a force 

error λ  and an auxiliary variable υ1  (Levis et al., 1999) 
 

  θ θ θ θ=θ -θ , +Λ , λ=λ -λ, υ =θ +Λ1d 1 d 1 1de s e e e    (3.1) 
 

where Λ – is a positive constant. Equation (2.10) expressed in these variables has the form 
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 The reduced dynamics, in terms of the filtered motion error, was converted to the form 
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where 
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 In order to realise the position-force control, the control was assumed in the form 
 

  ˆ λ + λT
C PD F d Fs K         Du u u u ς f K L J ς  (3.5) 

 
where ς – the robust term, uPD= KDLs - the form of PD control, where KD – the positive defined matrix of 

position gain, λ λT
F d FK    u J   - the force control, where KF – the positive force gain, C

ˆu f  - an 

approximation of the nonlinear function Eq.(3.4), seen as the compensatory control. The scheme of the 
closed-loop control system is shown in Fig.2. 
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Fig.2. The scheme of the closed-loop position-force control system. 
 

 Nonlinearity in the form of Eq.(3.4) is approximated with the neuro-fuzzy system Because of the 
explosion of solutions resulting from the large number of input variables, this function was broken up into 6 
components of the function given in the equation 

 
  ,nf 1 1 2 3 nf 2 4 5 6f g g g f g g g       (3.6) 
 

where 
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 (3.7) 

 
 Each of these functions has two input signals which allowed the use of this structure in real time. 

 
4. Neuro-fuzzy nonlinearity compensator  

 
 The neuro-fuzzy system was used for approximation of nonlinear functions. In this system the 

parameters of the conclusion and the premise of the rule base (Hendzel and Muszyńska, 2012; Muszyńska, 
2012) of the Sugeno model must be learned. Rules have the form 

 

       :IF AND THEN , , , ...,j 1 j1 2 j1 jR x A x B g w j 1 2 N     (4.1) 

 
where x1, x2 - input signals, Aj1 and Bj1 - fuzzy sets represented by the Gaussian functions; parameters of 
these sets are the width and the center, wj - conclusion of the rule base. Using a singleton defuzzification, 
assuming the Gaussian membership function, and the degree of compliance with the premise, we can write 
the fuzzy model in the form 
 

     
j

= = , = , ..., , = , ...,
N

TT T
j j 1 N 1 N

1

g w w w


   W WΦ Φ . (4.2) 

 
 The degree to meet the premise of the given rule is adopted in the form 
 

     =μ μj Aj 1 Bj 2x x   (4.3) 
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where µAj(x1) and µBj(x2) - fuzzy sets described by the Gaussian function 
 

     (.)μ =exp - -
22

ji i ji i jix r x c  
 

 (4.4) 

 
where rji, cji - width and center of this function. Considering Eq.(4.4), the degree to meet the premise of the 
rule (4.1) is written as 
 

     =exp - - - -
2 22 2

j j1 1 j1 j2 2 j2r x c r x c   
 

. (4.5) 

 
 This type of assumption makes it possible to describe the nonlinearity of the robot in the form of 
Eq.(4.6) interpreted as the neuro-fuzzy model, which will undergo learning in real time. Each of gi functions 
defined by Eqs (3.7) can be expressed as a product of weight with an index and the degree to meet the 
premise 
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where ( ) ( )( ) = ,...,k kk T
1 9w w 

 W  - the vector of conclusions of the rule base, ( ) ( )( ) = ,...,
Tk kk

1 9
   Φ  - the vector 

of premise evaluation of the rule base. As a result of the approximation of nonlinearities of the robot, and 
taking into account the aspect of the linearization of functions describing the fuzzy sets, the description of 
the closed-loop system is obtained as 
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Φ
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 (4.7) 

 
 Parameters of the neuro-fuzzy sets are tuned on-line based on the correlation of Eqs (4.8)-(4.9) with 
a robust control signal (4.10) 
   

      ˆ ˆ ˆˆ ˆ+
T TT T

nf W nf W ji ji W nfs r c s k s  W F L F A B L F L W


Φ  (4.8) 

 

  ˆ ˆˆ ˆ ˆ ˆ,k k
ji r nf r ji ji c nf c jir s k s r c s k s c   F AW L F L F BW L F L  , (4.9) 

 

  Ts

s
 

L
D Y

L
ς  (4.10) 

 

where ˆ
nfW , nfW  - the estimate of the conclusion and its error, ˆ

nfΦ , nf
Φ  - the estimate of the premise and 

its error,  ˆ ˆ ˆ, , ,f ji jiY d W r c
 - a matrix of measurable signals. All of the signals described by Eqs (4.8)-(4.10) 

arise from the analysis of the stability of the closed-loop control system. 
 An examplary implementation of the presented adaptive approach to determine the parameters of the 

conclusions and premises is symbolically shown in Fig.3. This figure demonstrates only the implementation 
of nonlinearities included in the function fnf1. This structure results from the fuzzy system. 
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Fig.3. Diagram of neuro-fuzzy system. 
 

5. Numerical test results 
 

 In this work, the Matlab/Simulink package is employed for the simulation of the proposed solutions 
of the neuro-fuzzy control of a robotic manipulator. A simulation study is carried out for the case when the 
tip of the manipulator moves along a path in the shape of a circle and exerts pressure on the contact surface. 
The simulation involved the adaptation of the conclusions and premises of the rule base. The distribution of 
fuzzy sets in the space considerations and parameters of the conclusions were adopted in accordance with 
Eqs (4.8)-(4.9).  

 The assumed values of control gains are: KD=diag{1, 1}, Λ=1, KF=1, gain of adaptation of 
conclusions Fw=0.05, gain of adaptation of premise’s centers Fc=1.5 and width Fr=0.08. The desired 
velocity and path of motion of the end-effector and the desired contact force are presented in Fig.4. 

 

 
 

       
 

Fig.4. a) desired velocity of end-effector motion, b) the path of the end-effector, c) the desired force. 
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 From the velocity and path the desired trajectory in the joint space arises, as a solution of inverse 
kinematics problem. This trajectory should be realised by the control system. The resulting control signals in 
the simulation are shown in Fig.5. Total control is generated in such a way as to realize the prescribed 
trajectory and provide the desired pressure of the manipulator’s tip on the contact surface. The analysis of the 
results presented in Fig.6 indicates that both the rule base conclusions, the widths and the centers of the 

premises of the rule base adapt during the robot’s movement. Oscillations of error   at the level of 5% of the 
reference value are due to the inaccuracies of force and position control, which caused pulsation of the 
downforce. 
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c)    d) 
 

0 20 40 60 80 100 120 140

-0.4

-0.2

0

0.2

0.4

t[s]

K
D

jL
js

j[N
m

]

KD1L1s1, KD2L2s2

t[s]

u F
j[N

m
]

uF1

uF2

0 20 40 60 80 100 120 140

-0.8

-0.4

0

0.4

0.8

 
 

Fig.5. a) Total control, b) compensatory control signals received during the adaptation of conclusions and 
premises of the neuro-fuzzy rule base, c) PD control signals, d) force control signals. 

 
a)    b) 

 

0 20 40 60 80 100 120 140
-0.2

-0.1

0

0.1

0.2

t[s]e


 [
ra

d]
,e. 

 [r
a
d/

s]

0 20 40 60 80 100 120 140
-0.2

-0.1

0

0.1

0.2

t[s]

W
nf

(2
)

 
 
 
 
 



Neuro-fuzzy control of a robotic manipulator  583 

 

 
c)    d) 
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Fig.6.  a) Motion errors, b) weights of the rule base conclusions, c) widths, d) centers of the Gaussian 
functions, e) the desired and realised contact force, f) force error. 

 
6. Conclusion 

 
 The effectiveness of the neuro-fuzzy control algorithm designed is confirmed by the tests. They 

confirm the validity of the control method. The results obtained show that the use of neuro-fuzzy 
compensation for nonlinearity of the robotic manipulator, in the task of tracking, is very beneficial. The 
analysis of the results of the numerical verification shows convergence of movement errors to zero. It is 
caused by taking into account the compensatory control signal from the neuro-fuzzy system. In addition, 
global stability of the closed-loop control system is ensured in the sense that the signals are limited. 

 The proposed control method of a nonlinear object, which is the robotic manipulator, is a tool which 
uses neuro-fuzzy information in a very efficient manner. 

 
Nomenclature 
 
   Aj1, Bj1 – fuzzy sets represented by the Gaussian functions 
 ai – parameters dependent on geometry and mass distribution of  
 eθ – motion error 
 F(k) – vector of premises evaluation of the rule base 
 KD – positive defined matrix of position gain 
 KF – positive force gain 
 q – vector of generalized coordinates  
 rji, cji – width and center Gaussian function 
 u1, u2 – drive moments 
 uC – approximation of the nonlinear function 
 uF – force control 
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 PDu   – PD control 

 W(k)T – vector of conclusions of the rule base 

  ,nf nfW W   – estimate of conclusion and its error 

 wj – conclusion of the rule base 
 x1, x2 – input signals 
 Y – matrix of measurable signals 
 ς  – robust term 
 θ1d(t)  – desired positional trajectory 
 λ – Lagrange multiplier (force normal to the constrain surface) 
 λd(t)  – desired force trajectory 
 λ  – force error 
  Aj 1x   – fuzzy set described by the Gaussian function 

 τd1, τd2 – disturbance 
 υ1 – auxiliary variable  
~  ,

nf nf
   – estimate of premise and its error 
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