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1. Introduction 

Object description by its contour is a critical part in many applications of image 
processing. Thus computer vision and artificial intelligence have a problem: how to 
model the active shape [1,2] via discrete set of two-dimensional boundary points? Also 
subject of shape representation and shape description is still opened [3,4]. The author 
wants to approach a problem of image structure representation by characteristic contour 
points and not limited to closed curves, but also working on open curves (for example a 
signature or handwriting). Proposed method relies on active functional modeling of 
boundary points situated between the basic set of the nodes. The functions that are used 
in calculations represent whole family of elementary functions: trigonometric, 
cyclometric, logarithmic, exponential and power function. Nowadays methods apply 
mainly polynomial functions, for example Bernstein polynomials in Bezier curves, 
splines and NURBS [5]. Numerical methods for data interpolation are based on 
polynomial or trigonometric functions, for example Lagrange, Newton, Aitken and 
Hermite methods. These methods have some weak sides [6] and are not sufficient for 
object modeling in the situations when the shape cannot be build by polynomials or 
trigonometric functions. Also trigonometric basis functions in Fourier Series Shape 
Models are not appropriate for describing all shapes. Model-based vision such as Active 
Contour Models (called Snakes) or Active Shape Models use the training sets to fit the 
data and they are applied only for closed curves. In this paper discussed approach is not 
limited to closed curves and it does not use a training set of some images, but only a set 
of two-dimensional nodes of the curve. Proposed Active Object Modeling is the 
functional modeling via any elementary functions and it helps us to fit the contour and to 
match the shape in object modeling or image analysis. The author presents novel method 
of flexible modeling and building the image structure for applications in signature and 
handwriting modeling, curve fitting, object representation and shape geometry. 
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This paper takes up new method of two-dimensional Active Object Modeling 
(AOM) by using a family of Hurwitz-Radon matrices. The method of Hurwitz-Radon 
Matrices (MHR) requires minimal assumptions about object. The only information about 
shape or curve is the set of at least five nodes. Proposed method of Hurwitz-Radon 
Matrices (MHR) is applied in curve modeling via different coefficients: sinusoidal, 
cosinusoidal, tangent, logarithmic, exponential, arc sin, arc cos, arc tan or power. 
Function for coefficient calculations is chosen individually at each Active Object 
Modeling and it depends on initial requirements and shape specifications to fit and to 
match the object. MHR method uses two-dimensional vectors (x,y) for data analysis and 
curve modeling. Shape of the object is represented by succeeding boundary points 
(xi,yi) ∈ R2 as follows in MHR method: 

1. At least five nodes (x1,y1), (x2,y2), (x3,y3), (x4,y4) and (x5,y5) if MHR method is 
implemented with matrices of dimension N = 2; 

2. For better modeling nodes ought to be settled at key points of the curve, for 
example local minimum or maximum and at least one point between two 
successive local extrema. 

Condition 1 is connected with important features of MHR method: MHR version with 
matrices of dimension N = 2 (MHR-2) needs at least five nodes, MHR version with 
matrices of dimension N = 4 (MHR-4) needs at least nine nodes and MHR version with 
matrices of dimension N = 8 (MHR-8) needs at least 17 nodes. Condition 2 means for 
example the highest point of the object in a particular orientation, convexity changing or 
curvature extrema. So this paper wants to answer the question: how to model the active 
object for discrete set of points? 

 

 

Fig. 1. Nodes of the object before modelin 

Coefficients for Active Object Modeling are computed via individual features of the 
object boundary using power function, sinus, cosine, tangent, logarithm, exponent or arc 
sin, arc cos, arc tan. 
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2. Active Object Modeling via MHR 

The method of Hurwitz – Radon Matrices (MHR), described in this paper, is 
computing points between two successive nodes of the curve. Data of Active Object 
Modeling are interpolated and parameterized for real number α ∈ [0;1] in the range of 
two successive nodes. MHR calculations are introduced with square matrices of 
dimension N = 2, 4 or 8. Matrices Ai, i = 1,2…m satisfying 

AjAk+AkAj = 0, Aj
2 = -I  for  j ≠ k; j, k = 1,2...m  

are called a family of Hurwitz - Radon matrices, discussed by Adolf Hurwitz and Johann 
Radon separately in 1923. A family of Hurwitz - Radon (HR) matrices [7] are skew-
symmetric (Ai

T= -Ai), Ai
-1 = - Ai and only for dimension N=2, 4 or 8 the family of HR 

matrices consists of N-1 matrices. For N = 2: 
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For N = 4 there are three HR matrices with integer entries: 
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For N = 8 we have seven HR matrices with elements 0, ±1. So far HR matrices have 
found applications in Space-Time Block Coding (STBC) [8] and orthogonal design [9], 
in signal processing [10] and Hamiltonian Neural Nets [11]. 

How coordinates of curve points are applied in Active Object Modeling? 
If boundary points have the set of following nodes {(xi,yi), i = 1, 2, …, n} then HR 
matrices combined with the identity matrix IN are used to build the orthogonal Hurwitz - 
Radon Operator (OHR). For points p1=(x1,y1) and p2=(x2,y2) OHR of dimension N = 2 is 
build via matrix M2: 
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For points p1=(x1,y1), p2=(x2,y2), p3=(x3,y3) and p4=(x4,y4) OHR M4 of dimension N = 4 is 
introduced: 
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where 

443322110 yxyxyxyxu +++= ,   
344312211 yxyxyxyxu −++−= , 

241342312 yxyxyxyxu ++−−= ,  
142332413 yxyxyxyxu +−+−= . 

For nodes p1=(x1,y1), p2=(x2,y2),… and p8=(x8,y8) OHR M8 of dimension N = 8 is 
constructed [12] similarly as (1) and (2): 
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and u = (u0, u1,…, u7)T (4). OHR operators MN (1)-(3) satisfy the condition of 
interpolation 

MN⋅x = y  (5) 

for x = (x1,x2…,xN)T ∈ RN, x ≠ 0, y = (y1,y2…,yN)T ∈ RN and N =2, 4 or 8. 

2.1 Functional coefficients in MHR Active Object Modeling 

Coordinates of points settled between the nodes are computed [13] using described 
MHR method [14]. Each real number c ∈ [a;b] is calculated by a convex combination 
c = α ⋅ a + (1 - α) ⋅ b for 

ab

cb

−
−

=α ∈ [0;1]. (6) 
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The average OHR operator M of dimension N = 2, 4 or 8 is build: 

BAM ⋅−+⋅= )1( γγ . (7) 

The OHR matrix A is constructed (1)-(3) by every second point p1=(x1=a,y1), 
p3=(x3,y3),… and p2N-1=(x2N-1,y2N-1): 

A = MN ( p1, p3,..., p2N-1).  
The OHR matrix B is computed (1)-(3) by data p2=(x2=b,y2), p4=(x4,y4),… and 
p2N=(x2N,y2N): 

B = MN(p2, p4,..., p2N). 
Vector of first coordinates C is defined for 

ci = α⋅x2i-1+ (1-α)⋅x2i     ,    i = 1, 2,…, N  (8) 
and C = [c1, c2,…, cN]T. The formula to calculate second coordinates y(ci) is similar to 
the interpolation formula (5): 

CMCY ⋅=)(   (9) 

where Y(C) = [y(c1), y(c2),…, y(cN)]T. So modeled value of y(ci) depends on four, eight or 
sixteen (2N) successive nodes, not only two. 

Key question is dealing with coefficient γ in (7). Coefficient γ is calculated using 
different functions (power, sinus, cosine, tangent, logarithm, exponent, arc sin, arc cos, 
arc tan) and choice of function is connected with initial requirements and shape 
specifications during fitting and matching of the object. Coefficients γ and α (6) are 
strongly related: 

1. γ = 0 ↔ α =0; 
2. γ = 1 ↔ α =1; 

3. γ ∈ [0;1]. 
Different values of coefficient γ are connected with implemented functions and positive 
real number s:  
γ=αs, γ=sin(αs·π/2), γ=sins(α·π/2), γ=1-cos(αs·π/2), γ=1-coss(α·π/2), γ=tan(αs·π/4), 
γ=tans(α·π/4), γ=log2(αs+1), γ=log2

s(α+1), γ=(2α–1)s, γ=2/π·arcsin(αs), γ=(2/π·arcsinα)s, 
γ=1-2/π·arccos(αs), γ=1-(2/π·arccosα)s, γ=4/π·arctan(αs), γ=(4/π·arctanα)s,  
γ=ctg(π/2– αs·π/4), γ=ctgs(π/2-α·π/4), γ=2-4/π·arcctg(αs), γ=(2-4/π·arcctgα)s. 
For example if s = 1 then: 
basic MHR γ = α, γ = sin(α · π/2), γ = 1-cos(α · π/2), γ = tan(α · π/4), γ = log2(α + 1), 
γ = 2α – 1, γ = 2/π· arcsin(α), γ = 1-2/π· arccos(α), γ = 4/π· arctan(α). 
What is very important, above functions used in γ calculations are strictly monotonic for 
α∈ [0;1], because γ ∈ [0;1] too. Choice of function and parameter s depends on object 
specifications and individual requirements. Fixing of unknown coordinates for curve 
points using (6)-(9) is called by author the method of Hurwitz - Radon Matrices (MHR) 
[15]. Each strictly monotonic function between points (0;0) and (1;1) can be used in 
Active Object Modeling – not only above functions. 
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3. Applications of AOM in Handwriting Modeling 

Boundary nodes: (0.1;10), (0.2;5), (0.4;2.5), (1;1) and (2;5) from Fig.1 are used in some 
examples of MHR Active Object Modeling with different γ. These examples are 
connected with handwriting modeling for letter “w”. Points of the object are calculated 
with matrices of dimension N = 2 and α = 0.1, 0.2,…,0.9. 
Example 1 
Sinusoidal modeling with γ = sin(α · π/2). 
 

 

Fig. 2. Sinusoidal modeling with nine reconstructed points between nodes 

Example 2 
Tangent modeling for γ = tan(α · π/4). 
 

 

Fig. 3. Tangent modeling with nine interpolated boundary points between nodes 
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Example 3 
Tangent modeling with γ = tan(αs · π/4) and s = 1.5. 
 

 

Fig. 4. Tangent modeling with nine recovered curve points between nodes 

Example 4 
Tangent modeling for γ = tan(αs · π/4) and s = 1.797. 
 

 

Fig. 5. Tangent modeling with nine reconstructed points between nodes 
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Example 5 
Sinusoidal modeling with γ = sin(αs · π/2) and s = 2.759. 
 

 

Fig. 6. Sinusoidal modeling with nine interpolated curve points between nodes 

Example 6 
Power function modeling for γ = αs and s = 2.1205. 
 

 

Fig. 7. Power function modeling with nine recovered object points between nodes 
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Example 7  
Logarithmic modeling with γ = log2(αs + 1)  and s = 2.533. 

 

Fig. 8. Logarithmic modeling with nine reconstructed points between nodes 

These seven examples demonstrate possibilities of Active Object Modeling for 
boundary nodes. Reconstructed values and interpolated points, calculated by MHR 
method, are applied in the process of curve modeling for fitting and matching the object 
during its analysis. Recovered points can be treated as a part of signature or handwriting 
and used during different stages of image processing, for example signature modeling, 
object representation, shape geometry and curve fitting. Every individual signature or 
handwriting, each letter or number can be modeled by some function for parameter γ. 
This parameter is treated as characteristic feature of letter or figure. 

4. Conclusions 

The method of Hurwitz-Radon Matrices (MHR) enables active modeling of two-
dimensional shapes using different coefficients γ: sinusoidal, cosinusoidal, tangent, 
logarithmic, exponential, arc sin, arc cos, arc tan or power function [16]. Function for γ 
calculations is chosen individually at each Active Object Modeling (AOM) and depends 
on initial requirements and curve specifications. MHR method leads to shape modeling 
via discrete set of fixed points. So MHR makes possible the combination of two 
important problems: interpolation and modeling. Main features of MHR method are:  

a) modeling of L points is connected with the computational cost of rank O(L) ; 
b) MHR is well-conditioned method (orthogonal matrices) [17]; 
c) coefficient γ is crucial in the process of AOM and it is computed individually 

for each object (contour, letter or figure). 
Future works are going to: features of coefficient γ, implementation of MHR and AOM 
in object recognition [18], shape representation, curve fitting, contour modeling and 
parameterization [19]. 
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Abstract 

Artificial intelligence and computer vision need methods for object modeling having 
discrete set of boundary points. A novel method of Hurwitz-Radon Matrices (MHR) is 
used in shape modeling. Proposed method is based on the family of Hurwitz-Radon (HR) 
matrices which possess columns composed of orthogonal vectors. Two-dimensional 
active curve is modeling via different functions: sinus, cosine, tangent, logarithm, 
exponent, arc sin, arc cos, arc tan and power function. It is shown how to build the 
orthogonal matrix OHR operator and how to use it in a process of object modeling. 

Streszczenie 

Matematyka i jej zastosowania wymagają odpowiednich metod modelowania oraz 
interpolacji danych. Autorska metoda Macierzy Hurwitza-Radona (MHR) jest sposobem 
modelowania krzywej 2D. Oparta jest ona na rodzinie macierzy Hurwitza-Radona, 
których kluczową cechą jest ortogonalność kolumn. Dwuwymiarowe dane są 
interpolowane z wykorzystaniem różnych funkcji rozkładu prawdopodobieństwa: 
potęgowych, wielomianowych, wykładniczych, logarytmicznych, trygonometrycznych, 
cyklometrycznych. W pracy pokazano budowę ortogonalnego operatora macierzowego 
i jego wykorzystanie w rekonstrukcji i modelowaniu danych. 
Słowa kluczowe: macierze Hurwitza-Radona, aktywne modelowanie obiektów 

 

 


