Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Soft Pneumatic Actuators (SPAs) have been increasingly used as fingers in robotic hands because of their inherent compliance, cost-effectiveness, and ease of construction. Nonetheless, the efficient modeling and controlling of soft pneumatic actuators is challenging due to inherent hysteresis nonlinearity, uncertainties, and external environmental perturbations. Another challenge in controlling soft mechanisms is the need for bending angle feedback signals from curvature sensors, but integrating curvature sensors into soft mechanisms is difficult and increases manufacturing costs. This paper proposes a simpler approach to controlling soft mechanisms. Instead of using the bending angle feedback signal from the curvature sensor, this study proposes a bending angle control solution through pressure. The analytical models for both the soft finger and pneumatic valves have been constructed. Subsequent bending tests are performed to ascertain the relationship between bending angle and air pressure. This work analyzes the adaptive sliding mode utilizing active rejected control to regulate the position of the soft pneumatic finger. The suggested control approach integrates parametric uncertainty and input constraints to mitigate the effects of system uncertainties. The simulation results reveal modest overshoots and little steady-state errors in the actuator's response; hence, the proposed controller has effectively fulfilled its control function. Comprehending soft material actuators devoid of curvature sensors would facilitate the rapid replication of novel design concepts and enable estimations of their efficacy without reliance on curvature sensors. This will result in more applications and the development of increasingly intricate motion systems.
Wydawca
Rocznik
Tom
Strony
341--356
Opis fizyczny
Bibliogr. 25 poz., fig., tab.
Twórcy
autor
- University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Ho Chi Minh City University of Industry and Trade; 140 Le Trong Tan, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
autor
- Ho Chi Minh City University of Industry and Trade; 140 Le Trong Tan, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
autor
- Ho Chi Minh City University of Industry and Trade; 140 Le Trong Tan, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam
Bibliografia
- 1. Zaidi S, Maselli M, Laschi C, Cianchetti M. Actuation technologies for soft robot grippers and manipulators: A review. Curr Robot Rep. 2021; 2: 355–69.
- 2. Yin R, Yang B, Ding X, Liu S, Zeng W, Li J, et al. Wireless multistimulus‐responsive fabric‐based actuators for soft robotic, human–machine interactive, and wearable applications. Adv Mater Technol. 2020; 5: 2000341.
- 3. Zhu M, Do TN, Hawkes E, Visell Y. Fluidic fabric muscle sheets for wearable and soft robotics. Soft Robotics. 2020; 7: 179–97.
- 4. Jin X, Feng C, Ponnamma D, Yi Z, Parameswaranpillai J, Thomas S, et al. Review on exploration of graphene in the design and engineering of smart sensors, actuators and soft robotics. Chem Eng J Adv. 2020; 4: 100034.
- 5. Kragic, D., Gustafson, J., Karaoguz, H., Jensfelt, P., and Krug, R. Interactive, collaborative robots: challenges and opportunities. In IJCAI (2018, July) 18–25.
- 6. Firth, C., Dunn, K., Haeusler, M.H., Sun, Y. Anthropomorphic soft robotic end-effector for use with collaborative robots in the construction industry. Autom Constr. 2022; 138: 104218.
- 7. Tlach V, Kuric I, Zajačko I, Kumičáková D, Rengevič A. The design of method intended for implementation of collaborative assembly tasks. Adv Sci Technol Res J. 2018; 12: 244–50.
- 8. Ebrahimi N., Bi C., Cappelleri D.J., Ciuti G., Conn A.T., Faivre D., et al. Magnetic actuation methods in bio/soft robotics. Adv Funct Mater. 2021; 31: 2005137.
- 9. Pal A., Restrepo V., Goswami D., Martinez R.V. Exploiting mechanical instabilities in soft robotics: control, sensing, and actuation. Adv Mater. 2021; 33: 2006939.
- 10. Trivedi D., Lotfi A., Rahn C.D. Geometrically exact models for soft robotic manipulators. IEEE Trans Robot. 2008; 24: 773–80.
- 11. Jeon H., Le Q.N., Jeong S., Jang S., Jung H., Chang H., et al. Towards a snake-like flexible robot with variable stiffness using an SMA spring-based friction change mechanism. IEEE Robot Autom Lett. 2022; 7: 6582–9.
- 12. El-Atab N., Mishra R.B., Al-Modaf F., Joharji L., Alsharif A.A., Alamoudi H., et al. Soft actuators for soft robotic applications: a review. Adv Intell Syst. 2020; 2: 2000128.
- 13. Xavier M.S., Tawk C.D., Zolfagharian A., Pinskier J., Howard D., Young T., et al. Soft pneumatic actuators: a review of design, fabrication, modeling, sensing, control and applications. IEEE Access. 2022; 10: 59442–85.
- 14. Xie R., Su M., Zhang Y., Guan Y. 3D-PSA: A 3D pneumatic soft actuator with extending and omnidirectional bending motion. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur, Malaysia: IEEE; 2018; 618–23.
- 15. Xavier M.S., Tawk C.D., Yong Y.K., Fleming A.J. 3D-printed omnidirectional soft pneumatic actuators: Design, modeling and characterization. Sens Actuators A Phys. 2021; 332: 113199.
- 16. Connolly F., Walsh C.J., Bertoldi K. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc Natl Acad Sci USA. 2017; 114: 51–6.
- 17. Zhong G., Dou W., Zhang X., Yi H. Bending analysis and contact force modeling of soft pneumatic actuators with pleated structures. Int J Mech Sci. 2021; 193: 106150.
- 18. Polygerinos P, Wang Z, Overvelde JTB, Galloway KC, Wood RJ, Bertoldi K, et al. Modeling of soft fiber-reinforced bending actuators. IEEE Trans Robot. 2015; 31: 778–89.
- 19. Roy R.C., Eric M.T. Mechanics of Materials. 4th edition. Wiley; 2020.
- 20. Borgnakke C, Sonntag E.R. Fundamentals of Thermodynamics. 8th edition. Wiley; 2013.
- 21. ISO 6358-2:2019 Pneumatic fluid power — Determination of flow-rate characteristics of components using compressible fluids. 2019.
- 22. Slotine J-JE, Li W. Applied nonlinear control. Englewood Cliffs, N.J: Prentice Hall; 1991.
- 23. Shao S., Gao Z. On the conditions of exponential stability in active disturbance rejection control based on singular perturbation analysis. Int J Control. 2017; 90: 2085–97.
- 24. Dragon skin series, Available at https://www.smooth-on.com/tb/files/DRAGON_SKIN_SERIES_TB.pdf (2018/06/04)
- 25. ImageJ. 2023. https://imagej.net/ij/index.html. Accessed 24 Dec 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d06cfe8-4155-4b17-ae8e-1e0c27ed7ae4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.