Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The primary microstructure of new Co-based superalloy of Co-20Ni-7Al-7W (at.%) type was showed in this article. The alloy was manufactured by induction melting in vacuum furnaces. This alloy is a part of new group of high-temperature materials based on Co solid solution and strengthened by coherent L12 phase similar to Ni-based superalloys with γʹ phase. The final form of Coss/L12 microstructure is obtained after fully heat treatment included homogenization, solutionizing and aging processes. But first step of heat treatment thermal parameters determination is characterization of primary microstructure of alloys after casting process with special attentions on segregations of alloying elements in solid solution and presences of structural elements such as eutectic areas, and other phases precipitations. In analysed case the relatively high homogeneity of chemical composition was expected especially in the case of W distribution, what was confirmed be SEM/EDS analysis in dendritic and interdendritic areas.
Czasopismo
Rocznik
Tom
Strony
78--83
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Institute of Material Science, Katowice, Poland
autor
- Silesian University of Technology, Institute of Material Science, Katowice, Poland
autor
- Silesian University of Technology, Institute of Material Science, Katowice, Poland
autor
- Silesian University of Technology, Institute of Material Science, Katowice, Poland
autor
- Silesian University of Technology, Institute of Material Science, Katowice, Poland
Bibliografia
- [1] Reed, R.C. (2006) The Superalloys Fundamentals and Applications. Cambridge University Press.
- [2] Coutsouradis, D., Davin, A. & Lamberigts M. (1987). Cobalt-based superalloys for applications in gas turbines. Materials Science and Engineering A. 88, 11-19. DOI:10.1016/0025-5416(87)90061-9.
- [3] Douglass, D.L., Bhide, V.S. & Vineberg, E. (1981). The corrosion of some superalloys in contact with coal chars in coal gasifier atmospheres. Oxidation of Metals. 16(1-2), 29-79. DOI: /10.1007/BF00603744.
- [4] Eliaz, N., Shemesh. G. & Latanision, R.M. (2002). Hot corrosion in gas turbine components. Engineering Failure Analysis 9(1), 31-43. DOI 10.1016/S1350-6307(00)00035-2.
- [5] Okamoto, H. (2008). Co-W (Cobalt-Tungsten). Journal of Phase Equilibria and Diffusion. 29(1), 119. DOI:10.1007/s11669-007-9229-0.
- [6] Okamoto, H., (2007). Co-Mo (Cobalt-Molybdenum), Journal of Phase Equilibria and Diffusion. 28(3), 300. DOI: 10.1007/s11669-007-9055-4.
- [7] Gupta, K.P. (2003). The Co-Nb-W (Cobalt-Niobium-Tungsten) system. Journal of Phase Equilibria. 24(1), 82-85. DOI: 10.1007/s11669-003-0018-0.
- [8] Gupta, K.P. (2003). The Co-Mo-Ta (Cobalt-Molybdenum-Tantalum) system. Journal of Phase Equilibria. 24(2), 186-189.
- [9] Sato, J., Omori, T., Oikawa, K., Ohnuma, I., Kainuma, R. & Ishida, K. (2006). Cobalt-base high-temperature alloys. Science. 312, 90-91. DOI:10.1126/science.1121738.
- [10] Lee, C.S. (1971). Precipitation-hardening characteristics of ternary cobalt– aluminum–X alloys. University of Arizona.
- [11] Korchynsky, M. & Fountain R.W. (1959). Precipitation phenomena in cobalt–tantalum alloys. Transactions of the Metallurgical Society of AIME. 215, 1033-1043.
- [12] Makineni, S.K., Nithin, B. & Chattopadhyay, K. (2015). A new tungsten-free γ-γʹ Co-Al-Mo-Nb-based superalloy. Scripta Materialia. 98, 36-39. DOI:10.1016/j.scriptamat. 2014.11.009.
- [13] Kokorin, V.V. & Chuistov, K.V. (1966). Initial stages of decomposition of supersaturated solid solutions Co–Ta and Co–Nb. Fiz Metallov Metalloved. 21, 311-314.
- [14] Dragsdorf, R.D. & Foreing, W.D. (1962). The intermetallic phases in the cobalt–tantalum system. Acta Crystallographica. 15, 531-536. DOI:10.1107/S0365110 X62001371.
- [15] Dutkiewicz, J. & Kostorz, G. (1991). Structure of martensite in Co–W alloys. Materials Science Engineering A. 132, 267-272. DOI: 10.1016/0921-5093(91)90383-X.
- [16] Pollock, T.M., Dibbern, J., Tsunekane, M., Zhu, J. & Suzuki A. (2010). New Co-based gamma-gamma prime high-temperature alloys. JOM. 62(1) 58-63. DOI:10.1007/s11837-010-0013-y.
- [17] Liu, Q., Coakley, J., Seidman, D.N. & Dunand, D.C. (2016). Precipitate evolution and creep behavior of a W-free Co-based superalloy. Metallurgical and Materials Transactions A. 47, 6090-6096. DOI:10.1007/s11661-016-3775-1.
- [18] Shinagawa, K., Omori, T., Sato, J., Oikawa, K., Ohnuma, I., Kainuma, R. & Ishida, K. (2008). Phase equilibria and microstructure on γʹ phase in Co–Ni–Al–W system.
- Materials Transactions. 49 (6), 1474.1479. DOI: 10.2320/ matertrans.MER2008073.
- [19] Yan, H.-Y., Coakley, J., Vorontsov, V.A., Jones, N.G., Stone, H.J. & Dye, D. (2014). Alloying and the micromechanics of Co–Al–W–X quaternary alloys. Materials Science and Engineering A. 613, 201-208. DOI: 10.1016/j.msea.2014.05.044.
- [20] Neumeier, S., Freund, L.P. & Göken, M. (2015). Novel wrought γ/γʹ cobalt base superalloys with high strength and improved oxidation resistance. Scripta Materialia. 109, 104-107. DOI: 10.1016/j.scriptamat.2015.07.030.
- [21] Zenk, C.H., Neumeier, S., Engl, N.M., Fries, O., Dolotko, S.G., Weiser, M., Virtanen, S. & Göken, M. (2016). Intermediate Co/Ni-base model superalloys-thermophysical properties, creep and oxidation. Scripta Materialia. 112, 83-86. DOI: 10.1016/j.scriptamat.2015.09.018.
- [22] Mikuszewski, T., Tomaszewska, A., Moskal, G., Migas, D. & Niemiec D. (2017). Characterization of primary microstructure of γ-γ' Co-Al-W cobalt-based superalloy. Inżynieria Materiałowa (Materials Engineerig.) 5, 217-223. DOI:10.15199/28.2017.5.3
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7d05b95a-97d6-4e62-857d-a7936ab3c0bb