PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optyczne własności nanokompozytów otrzymywanych metodą mikrowyciągania na bazie szkła NBP i domieszkowanych nanocząstkami Ag i jonami Er3+

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Optical features of nanocomposites obtained by micro-pulling method based on NBP glass containing Er3+ and silver nanoparticles
Języki publikacji
PL EN
Abstrakty
PL
Opracowano technologię otrzymywania włókien szklanych z Na5B2P3O13 (NBP) oraz włókien NBP domieszkowanych nanocząstkami srebra i jonami Er3+ (NBP_Er3_nAg) przy użyciu metody mikrowyciągania. Metoda ta jest interesująca ze względu na możliwość uzyskania trwałych nanokompozytowych struktur 3D. Zbadano własności optyczne otrzymanych struktur. W czystym NBP obserwowano przesunięcie krawędzi absorpcji w kierunku długofalowym (do ~ 250 nm), który wiązany jest ze wzrostem zasadowości optycznej szkła wskutek zmiany wzajemnego stosunku niemostkowanych do zmostkowanych jonów tlenu. W strukturach NBP_Er3_nAg wzbudzanych linią 325 nm lasera He-Cd obserwowano transfer energii z widma emisyjnego szkła NBP do jonów Er3+ i nanocząstek srebra. Stwierdzono około dwukrotny wzrost emisji dla przejść 4I13/2-4I15/2 w obecności nanocząstek Ag w wyniku transferu energii z nAg do jonów Er3+ . Po raz pierwszy zaobserwowano również w 300K emisję przy 615 nm pochodzącą od przejść 4G11/2-4I11/2 . Ponad pięciokrotne wzmocnienie występuje w obecności silnego piku związanego z LSPR wskutek transferu energii z nanocząstek nAg na poziom 4G11/2 jonu erbu. Przy wzbudzaniu rezonansowym dla przejść 4I15/2-4F7/2 linią 488 nm emisja przy 1532 nm pochodzi głównie od wzbudzenia poziomu 4I13/2 w wyniku relaksacji wielofononowej z poziomu 4F7/2 , a obserwowane gaszenie emisji przy 1532 nm wynika z transferu energii z jonów Er3+ do grupy hydroksylowej OH, transferu pomiędzy jonami erbu oraz transferu do nanocząstek srebra.
EN
A new technology of the manufacturing of Na5B2P3O13 (NBP) glass fibers doped with erbium ions and silver nanoparticles (nAg) was elaborated by using micro-pulling method (μ - PD). The method is interesting as it allows to obtain the solid and stable 3D nanocomposite structures. The optical features of these structures were studied. A “red shift” of the absorption band gap observed for pure NBP fibers was related to the change in the optical basicity of the glass due to the change in the relation between bridging and non-bridging oxygen. In the plasmonic composite doped with nAg and Er3+ (NBP:Er3:nAg) excited with 325 nm line of He-Cd laser a radiative energy transfer was observed from matrix emission to Er3+ and nAg. Twofold increase of the emission for 4I13/2-4I15/2 transition was stated in presence of nAg. For the first time the emission at 615 nm for 4G11/2 -4I11/2 transitions was observed and more than fivefold increase in the intensity of this line occurred in the presence of the strong local surface plasmon resonance (LSPR) due to energy transfer from nAg. During excitation with 488 nm line the intensity of the emission at 1536 nm (4I13/2-4I15/2 transitions) was mainly controlled by the energy transport from Er3+ ions to hydrocarboxyl group OH as well as energy migration between erbium ions.
Słowa kluczowe
Rocznik
Strony
34--49
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
autor
  • Instytut Technologii Materiałów Elektronicznych ul. Wólczyńska 133, 01-919 Warszawa
autor
  • Instytut Technologii Materiałów Elektronicznych ul. Wólczyńska 133, 01-919 Warszawa
autor
  • Instytut Technologii Materiałów Elektronicznych ul. Wólczyńska 133, 01-919 Warszawa
Bibliografia
  • [1] Malta O. L. et al.: Fluorescence enhancement induced by the presence of small silver particles in Eu3+ doped materials, Lumin J., 1985, 33, 261
  • [2] Hayakawa T., Selvan S. T., Nogami M.: Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass, J. Non Cryst. Solids, 1999, 259, 16
  • [3] Hayakawa T., Furuhashi T., Nogami M.: Enhancement of 5D0-7FJ Emissions of Eu3+ Ions in the Vicinity of Polymer-Protected Au Nanoparticles in Sol−Gel-Derived B2O3−SiO2 Glass, J. Phys. Chem. B, 2004,108, 11301
  • [4] Naranjo L. P et. al.: Enhancement of Pr3+ luminescence in PbO–GeO2 glasses containing silver nanoparticles, Appl. Phys. Lett., 2005, 87, 241914
  • [5] Fukushima M. et al.: Enhancement of 1.54-μm emission from Er-doped sol-gel SiO2 films by Au nanoparticles doping, J. Appl. Phys., 2005, 98, 24316
  • [6] Kassab L. P. et al.: Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles, Appl. Phys. B, 2009, 94, 239
  • [7] Ströhhofer C., Polman A.: Silver as a sensitizer for erbium, Appl. Phys. Lett., 2002, 81, 1414
  • [8] Jimenez J. A., Lysenko S., Liu H.: Optical properties of aluminophosphate glasses containing silver, tin, and dysprosium, J. Mater. Sci., 2010, 45, 2983
  • [9] Kalkman J., Kuipers L., Polman A., Coupling of Er ions to surface plasmons on Ag, Appl. Phys. Lett., 2005, 86, 041113
  • [10] Luciana R. P. et al.: Influence of metallic nanoparticles on electric-dipole and magnetic-dipole transitions of Eu3+ doped germanate glasses, J. Appl. Phys., 2010, 107, 113506
  • [11] Kaminskii A. A.: Laser crystals their physics and properties, second ed., Springer, Berlin, Heidelberg, New York, 1990
  • [12] Brow R. K.: Review: the structure of simple phosphate glasses, J. Non-Cryst. Solids, 2000, 263 - 264, 1
  • [13] Brow R. K., Tallant D. R.: Structural design of sealing glasses, J. Non-Cryst. Solids, 1997, 222, 396
  • [14] Carta D. et al.: The effect of composition on the structure of sodium borophosphate glasses, J. Non- -Cryst. Solids, 2008, 354, 3671
  • [15] Lee E. T. Y. , Taylor E. R. M.: Compositional effects on the optical and thermal properties of sodium borophosphate glasses, J. Phys. Chem. Solids, 2005, 66, 47
  • [16] Di Bartolo B.: Optical interaction in solids 2 ed., World Scientific Publishing Co, Pte. LTd, 2009
  • [17] Miyakawa T. Dexter D. L: Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids, Phys. Rev B, 1970, 1, 2961
  • [18] Dexter D. L.: A theory of sensitized luminescence in solids, J. Chem.Phys., 1953, 21, 836
  • [19] Ebendorff-Heidepriem H., Seeber W., Ehrt D.: Spectroscopic properties of Nd3+ ions in phoshate glasses, J. Non-Cryst. Solids, 1995, 183, 191
  • [20] T. Yu. Ivanova et al.: Er3+ to glass matrix energy transfer in Ga–Ge–S:Er3+ system, J. Non-Cryst. Solids, 2002, 298, 7
  • [21] Forstrer L., ,Ann. Phys., 1948, 2, 55
  • [22] Craig F. Bohren: How can a particle absorb more than the light incident on it?, Am. J. Phys., 1983, 51, 323
  • [23] Brongersma M. L., Kik P. G., Surface plasmon nano photonics, Springer 2007.
  • [24] Boohren C. F., Huffman D.: Absorption and scattering of light by small particles, 2004, WILEY-VCH Verlag Gmbh & Co.
  • [25] Kreiberg U., Vollmer M., Optical properties of metal clasters, Springer-Verlag Berlin Heidelberg, 1995
  • [26] Brongersmaand M. L., Kik P. G., “Surface Plasmon nanophotonics, Springer, 2007
  • [27] Martin-Moreno L., Garcia-Vidal F. J., Opt. Express, 2004, 12, 3619
  • [28] Evanoff D. D., Jr., Chumanov G.: Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections, J. Phys. Chem. B, 2004, 108, 13957
  • [29] Sun G. and Khurgin J. B.: Plasmonic enhancement of optical properties by isolated and coupled metal nanoparticles, w Plasmonics and Plasmonic Metamaterials: Analysis and Applications. Ed. by Tsukerman Igor et al. Published by World Scientific Publishing Co. Pte. Ltd., 2012, 1 - 44, ISBN #9789814355285,
  • [30] Hong H. Y. B., Kafalas J. A., Goodenough J. B.: Crystal chemistry in the system MSbO3, J. Solid State Chem., 1974, 9, 345
  • [31] Belharouak I., et al.: Silver aggregates in photoluminescent phosphate glasses of the `Ag2O–ZnO–P2O5' system, J. Non-Cryst. Solids, 1999, 244, 238
  • [32] Kordes E., Nieder, Glastechn. Ber., 1959, 32, 267
  • [33] Abdelghany A. M. et al.: Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation, Spectrochim. Acta Part A, 2012, 98, 148
  • [34] Arriagada J. C., Buckhard W., Feltz A., J. Non Cryst. Solids, 1987, 91, 375
  • [35] Ehrt D., Ebeling P., Natura U.: UV Transmission and radiation-induced defects in phosphate and fluoride– phosphate glasses, J. Non-Cryst. Solids, 2000, 263 & 264, 240
  • [36] Ehrt D., Seeber W.: Glass for high performance optics and laser technology, J. Non-Cryst. Solids, 1991, 129, 19
  • [37] Duffy J. D., Phys. Chem. Glasses, 1997, 38, 289
  • [38] Duffy J. A., Ingram M. D.: An interpretation of glass chemistry in terms of the optical basicity concept, J. Non-Cryst. Solids 1976, 21, 373
  • [39] Duffy J. A., Phys. Chem. Glasses, 1989, 30, 1
  • [40] Boutinaud P., Bill H., J. Phys. Chem. Solids., 1996, 51, 55
  • [41] Paje S. E. et al.: Photoluminescence of a silver-doped glass, Appl. Phys. A, 1996, 63, 431
  • [42] Arnold G. W., Broders J. A.: Aggregation and migration of ion‐implanted silver in lithia‐alumina‐silica glass, J. App. Phys., 1977, 48, 1488
  • [43] Dai S. et al.: Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses, J. Lumin., 2003, 104, 55
  • [44] Mattarelli M. et al.: Silver to erbium energy transfer in phosphate glasses, J. Non-Cryst. Solids, 2007, 353, 498
  • [45] Portales H., et al.: Investigation of the role of silver on spectroscopic features of Er3+ - activated Ag- exchanged silicate and phosphate glasses, J. Non- -Cryst Solids, 2005, 351, 1738
  • [46] Jimenez J. A. et al.: Photoluminescence via Plasmon resonance energy transfer in silver nanocomposite glasses, J. Appl. Phys., 2008, 104, 054313
  • [47] Borsella E. et al.: Structural incorporation of silver in soda-lime glass by the ion-exchange process: a photoluminescence spectroscopy study, Appl. Phys. A, 2000, 71, 125
  • [48] Maurel C. et al.: Luminescence properties of silver zinc phosphate glasses following different irradiations, J. Lumin. 2009, 129, 1514
  • [49] Mesnaoui M. et al., Eur. J. Solid State Inorg. Chem., 1992, 29, 1001
  • [50] Villegas M. A. et al., Phys. Chem. Glassess, 1996, 37, 248
  • [51] Paje S. E. et al.: Photoluminescence of a silver-doped glass, Appl. Phys. A, 1996, 63, 431
  • [52] Speghini A., Francini R., Martinese A., Bettinelli M.: Spectroscopic properties of Er3+, Yb3+ and Er3+/ Yb3+ doped metaphosphate glasses, Spectrochim. Acta Part, 2001, A 57, 2001
  • [53] Obaton A. F., al., J. Appl. Phys., 1998, 4, 315
  • [54] Ebendorff-Heidepriem H., Seeber W., Ehrt D., 1993, 163, 74
  • [55] Day D. E., J. Amer. Ceram. Soc., 1974, 57, 165
  • [56] Carta D.,et al.: The effect of composition on the structure of sodium borophosphate glasses, J. Non-Cryst Solids, 2008, 354, 3671
  • [57] Zhang L., Hu H., J. Phys. Chem. Solids. 2002, 63, 575
  • [58] Yang Z., Jiang Z.: Thermal stability and spectroscopic properties of Er3+-doped lead fluorogermanate glasses, J. Lumin. 2006, 121, 149
  • [59] Dai S. et al.: Effect of radiative trapping on measurement of the spectroscopic properties of Yb3+:phosphate glasses, J. Lumin., 2003, 104, 55
  • [60] Polman A.: Erbium implanted thin film photonic materials, J. Appl.Phys., 1997, 82, 1
  • [61] Jiménez J. A. et al.: Investigation of the influence of silver and tin on the luminescence of trivalent europium ions in glass, Journal of Luminescence, 2010, 130, 163 – 167A
  • [62] Jiménez J. A., Lysenko S., Zhang Ć G.: Optical properties of silver-doped aluminophosphate glasses, J. Mater. Sci., 2007, 42, 1856
  • [63] El Malsoumi M. et al.: Structure and luminescence properties of silver-doped NaY(PO3)4 crystal, J. Solid State Chem. 2008, 181, 3078
  • [64] Podlipensky A. V.: Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study, J. Lumin. 2004, 109, 135
  • [65] Weber M. J., Phys. Rev. 1967, 157, 262
  • [66] Ghosh A., Debnath R.: Judd–Ofelt analysis of Er+3 activated lead free fluoro–tellurite glass, Opt. Mat., 2009, 31, 604
  • [67] Pan Z. et al.: Infrared to visible upconversion in Er3+‐doped‐lead‐germanate glass: Effects of Er3+ ion concentration, J. App. Phys., 1995, 77, 4688
  • [68] Speghini A. et al.: Spectroscopic properties of Er3+, Yb3+ and Er3+/Yb3+ doped metaphosphate glasses, Spectrochim. Acta Part A, 2001, 57, 2001
  • [69] F eng X., Tanabe S., Handa T.: Hydroxyl groups in erbium-doped germanotellurite glasses, J. Non Cryst. Solids, 2001, 281, 48
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cfbe8ae-2988-46db-bfd1-8cadf009e545
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.