Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aims to investigate the biosurfactant production capabilities of bacterial strains isolated from oil-contaminated soil samples. Employing a comprehensive methodological approach, we collected soil samples from thirty different fuel pumps and conducted an extensive screening of bacterial isolates using various tests such as hemolytic activity, emulsification index, blue agar plate method, and drop collapsing test. The results revealed significant biosurfactant production among certain isolates, specifically highlighting the effectiveness of two particular strains. This paper presents a detailed analysis of these strains, including their optimal growth conditions in terms of pH, temperature, carbon, and nitrogen sources. Our findings indicate a notable potential of these bacterial strains in biosurfactant production, with implications for environmental bioremediation, particularly in oil pollution contexts. The study also sheds light on the limitations encountered and underscores the originality of the research in exploring biosurfactant production in a novel context. This study contributes to the field by offering insights into the effective utilization of microbial strains for biosurfactant synthesis, which is crucial for sustainable and eco-friendly bioremediation practices.
Wydawca
Rocznik
Tom
Strony
9--20
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- College Environmental Science, Al-Qasim Green University, Babylon, Iraq
- College Environmental Science, Al-Qasim Green University, Babylon, Iraq
- College of Agriculture, Al-Qasim Green University, Babylon, Iraq
Bibliografia
- 1. Ahimou, F., Jacques, P., Deleu, M. 2000. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enz. Microb. Technol., 27, 749-754.
- 2. Bach, J.F. 2002. The effect of infections on susceptibility to autoimmune and allergic diseases. New England journal of medicine, 347(12), 911-920.
- 3. Banat, I.M., Makkar, R.S., Cameotra, S.S. 2000. Potential commercial Application of Microbial Surfactants. Applied Microbio Biotechnol., 53, 495-508.
- 4. Bodour A., Miller-Maier R.M. 1998. Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 32, 273-280.
- 5. Bodour A.A., Gerrero-Barajas C., Maier M. 2004. Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavolipid sp. strainMTN11. Appl. Environ. Microbiol., 10(6), 1114-1120.
- 6. Carrillo, P.G., Mardaraz, C., Pitta-Alvarez, S.I., Giulietti, A.M. 1996. Isolation and selection of biosurfactant-producing bacteria. World Journal of Microbiology and Biotechnology, 12, 82-84.
- 7. Das K., Mukharjee AK. 2007 Crude petroleum biodegradation efficiency of Bacillus suubtilis and Pseudomonas aerugiflosa strains isolated from petroleum oil contaminated soil from north east India. Bioresource Technol, 98:1339-1345.
- 8. Das K., Mukharjee A.K. 2005. Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non niucoid strains. Appl Microbiol Biotechnol, 69, 192-199.
- 9. Jain, D.K., Collins-Thompson, D.L., Lee, H. 1991. A drop collapsing test for screening biosurfactant producing microorganisms. J. Microbiol. Meth., 13, 271–279.
- 10. Maier RM. 2003. Biosurfactant: Evolution and diversity in bacteria. Adv. Appi Microbiol, 52, 101-102
- 11. Maier, R.M., Soheron-Chavez, G.. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol. Biotechnol., 2000, 54, 625-633.
- 12. Mizumoto S, Hirani M., Shoda M. 2007. Enhanced iturin a production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. AppI Microbiol Biotechnol., 75, 1267-1274.
- 13. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H. R., Leaner, J., ... Telmer, K. 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951-5964.
- 14. Mulligan, C.N., Cooper, D.G., Neufeld, R.J. 1984. Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol. 62: 311-314.
- 15. Mulligan, C.N., Chow, T.Y.K., Gibbs, B.F. 1989. Enhanced biosurfactant production by a mutant Bacillussubtilis strain. Appl. Microbiol. Biotechnol., 31, 486-489.
- 16. Mulligan, C.N. 2005. Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183-198.
- 17. Pornsunthorntawee, O., Wongpanit, P., Chavadej, S., Abe, M., Rujiravanit, R. 2008. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresource technology, 99(6), 1589-1595.
- 18. Rodrigues, L.R., Teixeira, J.A., van der Mei, H.C., Oliveira, R. 2006. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids and Surfaces B: Biointerfaces, 49(1), 79-86.
- 19. Dales, R., Blanco-Vidal, C., Romero-Meza, R., Schoen, S., Lukina, A., Cakmak, S. 2021. The association between air pollution and COVID-19 related mortality in Santiago, Chile: A daily time series analysis. Environmental Research, 198, 111284.
- 20. Satpute S.K., Bhawsar B.D., Dhakephalkar P.K., Chopade B.A. 2008. Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Ind. J. Mar. Sci., 37, 243–250.
- 21. Nayak, P.S., Singh, B.K. 2007. Removal of phenol from aqueous solutions by sorption on low cost clay. Desalination, 207(1-3), 71-79.
- 22. Singh, K.P., Malik, A., Mohan, D., Sinha, S. 2004. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) – a case study. Water research, 38(18), 3980-3992.
- 23. Franzetti, A., Gandolfi, I., Fracchia, L., Van Hamme, J., Gkorezis, P., Marchant, R., Banat, I. M. 2014. Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. Biosurfactants: production and utilization—processes, technologies, and economics, 159, 361.
- 24. Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., Cameotra, S.S. 2002. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Applied and Environmental Microbiology, 68(12), 6210-6219.Wang et al. 2007
- 25. Wang, S.J., Liu, Q. M., Zhang, D.F. 2004. Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land degradation & development, 15(2), 115-121.
- 26. Youssef, N., Duncan, K.E., Savage, K.N. 2004. Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal Microbiology Methods, 56, 339-347.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cfa6d22-20b3-4df0-8a5d-0ab390b7e021