Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On satellite missions have been monitoring hydrological events on Earth’s surface for nearly two decades. Monthly gravity solutions from these satellites are available as Level-2 (L2) spherical harmonic coefficients or as ready-to-use Level-3 (L3) data, typically representing Total Water Storage (TWS) variations. L3 data, such as Goddard Space Flight Center (GSFC) mascon data, include essential corrections like post-glacial rebound and signal-leakage, and precisely represent TWS variations for specific regions, such as river basins, without additional corrections. However, certain geopotential changes, such as groundwater-induced vertical displacements, gravity anomalies and geoid height changes cannot be directly obtained from these data. To evaluate these geopotential changes, L3 data needs to be transformed into harmonic coefficient solutions. While this method is more computationally demanding compared to adapting L2 data with necessary corrections, the question remains: How can L3 TWS data be directly transformed into other potential changes? In this study, we propose a regression approach for the Türkiye region, using approximately hundred GSFC-mascon blocks to convert TWS into groundwater-induced vertical displacements. Transformation parameters are estimated by considering outcomes from L2 data, specifically selecting DDK2- filtered data. The ratio between vertical displacement and TWS for each mascon is modeled by a quadratic function based on TWS magnitudes. Investigating residuals reveals a timedependent pattern, which requires a second regression to model this aspect. This two-step regression approach successfully transforms TWS into vertical displacements, with a rootmean- square error of about half a millimeter, providing satisfactory results for the region.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e64, 2025
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Yildiz Technical University, Esenler, Türkiye
autor
- Yildiz Technical University, Esenler, Türkiye
autor
- Yildiz Technical University, Esenler, Türkiye
Bibliografia
- 1. Cheng, M., and Ries, J. (2017). The unexpected signal in GRACE estimates of C20. J. Geod., 91(8), 897–914. DOI: 10.1007/s00190-016-0995-5.
- 2. Dobslaw, H., Bergmann-Wolf, I., Dill, R. et al. (2017). Product Description Document for AOD1B Release 06, GRACE 327-750, GFZ German Research Centre for Geosciences, Department 1: Geodesy and Remote Sensing.
- 3. Farrell, W.E. (1972). Deformation of the Earth by surface loads. Rev. Geophys., 10(3), 761–797. DOI:10.1029/RG010i003p00761.
- 4. Flechtner, F., Sneeuw, N., and Schuh, W.D. (2014). Observation of the system earth from space: CHAMP, GRACE, GOCE and future missions. Berlin, Germany: Springer.
- 5. Fu, Y., and Freymueller, J.T. (2012). Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements. J. Geophys. Res. Solid Earth, 117(B3). DOI:10.1029/2011JB008925.
- 6. Fu, Y., Freymueller, J.T., and Jensen, T. (2012). Seasonal hydrological loading in southern Alaska observed by GPS and GRACE. Geophys. Res. Lett., 39, L15310. DOI: 10.1029/2012GL052453.
- 7. Hao, M., Freymueller, J., Wang, Q. et al. (2016). Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data. Earth Planet. Sci. Lett., 437, 1–8. DOI:10.1016/J.EPSL.2015.12.038.
- 8. Kusche, J., Schmidt, R., Petrovic, S. et al. (2009). Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J. Geod., 83, 903–913. DOI: /10.1007/s00190-009-0308-3.
- 9. Lenczuk, A., Leszczuk, G., Klos, A. et al. (2020). Study on the inter-annual hydrology-induced deformations in Europe using GRACE and hydrological models. J. Appl. Geod., 14(4), 393–403. DOI: 10.1515/jag-2020-0017.
- 10. Liu, R., Li, J., Fok, H. et al. (2014). Earth surface deformation in the north China plain detected by joint analysis of GRACE and GPS data. Sensors, 14(10), 19861–19876. DOI: 10.3390/s141019861.
- 11. Loomis, B.D., Rachlin, K.E., and Luthcke, S.B. (2019a). Improved Earth oblateness rate reveals increased ice sheet losses and mass-driven sea level rise. Geophys. Res. Lett, 46, 6910–6917. DOI:10.1029/2019gl082929.
- 12. Loomis, B.D., Luthcke, S.B., and Sabaka, T.J. (2019b). Regularization and error characterization of GRACE mascons. J. Geod., 93, 1381–1398. DOI: 10.1007/s00190-019-01252-y.
- 13. Loomis, B.D., Rachlin, K.E., Wiese, D.N. et al. (2020). Replacing GRACE/GRACE-FO with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change. Geophys. Res. Lett, 47(3), e2019GL085488. DOI: 10.1029/2019GL085488.
- 14. Peltier,W.R., Argus, D.F., and Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation:The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth, 120(1), 450–487. DOI:10.1002/2014JB011176.
- 15. Ries, J., Bettadpur, S., Eanes, R. et al. (2016). The Combined Gravity Model GGM05C. GFZ Data Services. DOI: 10.5880/icgem.2016.002.
- 16. Sun, Y., Riva, R., and Ditmar, P. (2016). Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res. Solid Earth, 121(11), 8352–8370. DOI: 10.1002/2016JB013073.
- 17. Tan, W., Dong, D., Chen, J. et al. (2016). Analysis of systematic differences from GPS-measured and GRACE-modeled deformation in Central Valley, California. Adv. Space Res., 57(1), 19–29. DOI:10.1016/j.asr.2015.08.034.
- 18. Tangdamrongsub, N., and Šprlák, M. (2021). The assessment of hydrologic-and flood-induced land deformation in data-sparse regions using GRACE/GRACE-FO data assimilation. Remote Sens., 13(2). DOI: 10.3390/rs13020235.
- 19. Tesmer, V., Steigenberger, P., Dam, T. et al. (2011). Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J. Geod., 85, 291–310. DOI: 10.1007/S00190-010-0437-8.
- 20. Tregoning, P., Watson, C., Ramillien, G. et al. (2009). Detecting hydrologic deformation using GRACE and GPS. Geophys. Res. Lett, 36(15). DOI: 10.1029/2009GL038718.
- 21. van Dam, T., Wahr, J., and Lavallée, D. (2007). A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. J. Geophys. Res. Solid Earth, 112(B3). DOI: 10.1029/2006JB004335.
- 22. Wahr, J., Molenaar, M., and Bryan, F. (1998). Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth, 103(B12), 30205–30229. DOI: 10.1029/98JB02844.
- 23. Wahr, J. (2007). Time-variable gravity from satellites. Treatise on geophysics, 3, 213–237. DOI:10.1016/B978-044452748-6.00176-0.
- 24. Wang, L., Chen, C., Ma, X. et al. (2020). Evaluation of GRACE mascon solutions using in-situ geodetic data: The case of hydrologic-induced crust displacement in the Yangtze River Basin. Sci. Total Environ., 707, 135606. DOI: 10.1016/j.scitotenv.2019.135606.
- 25. Wang, P., Wang, S.Y., Li, J. et al. (2023). Comparison of GRACE/GRACE-FO Spherical Harmonic and Mascon Products in Interpreting GNSS Vertical Loading Deformations over the Amazon Basin. Remote Sens., 15(1), 252. DOI: 10.3390/rs15010252.
- 26. Yin, G., Forman, B.A., Loomis, B.D. et al. (2020). Comparison of vertical surface deformation estimates derived from space-based gravimetry, ground-based GPS, and model-based hydrologic loading over snow-dominatedwatersheds in theUnited States. J. Geophys. Res. Solid Earth, 125(8), e2020JB019432. DOI: 10.1029/2020JB019432.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cf38a6f-20d1-4e20-8463-aa98ebb587d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.