Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Research into the topology control of Wireless Sensor Networks (WSNs) is geared towards modeling and analysis of methods that may be potentially harnessed to optimize the structure of connections. However, in practice, the ideas and concepts provided by researchers have actually been rarely used by network designers, while sensor systems that have already been deployed and are under continued development in urban environments frequently differ from the patterns and research models available. Moreover, easy access to diversified wireless technologies enabling new solutions to be empirically developed and popularized has also been conducive to strengthening this particular trend.
Rocznik
Tom
Strony
47--57
Opis fizyczny
Bibliogr. 76 poz., rys., fot.
Twórcy
autor
- Chair of Communication and Computer Networks, Faculty of Electronics and Telecommunications, Poznan University of Technology, Polanka 3, 61-131 Poznań, Poland
Bibliografia
- [1] B. Musznicki and P. Zwierzykowski, „Performance evaluation of ooding algorithms for wireless sensor networks based on EffiSen: The custom-made simulator", in Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test, A.-S. K. Pathan, M. M. Monowar, and S. Khan, Eds. Boca Raton, FL, USA: CRC Press, 2015, pp. 433-458 (doi: 10.1201/b17650-21).
- [2] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor Networks. Chichester: Wiley, 2005 (ISBN: 978-0-470-09510-2).
- [3] I. Akyildiz and M. C. Vuran, Wireless Sensor Networks. Chichester: Wiley, 2010 (ISBN: 9780470036013).
- [4] R. Faludi, Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing. Sebastopol, CA, USA: O'Reilly Media, 2010 (ISBN: 978-0596807733).
- [5] S. Ferdoush and X. Li, „Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications", Procedia Comp. Sci., vol. 34, pp. 103-110, 2014 (doi: 10.1016/j.procs.2014.07.059).
- [6] F. Leccese, M. Cagnetti, and D. Trinca, „A smart city application: a fully controlled street lighting isle based on Raspberry Pi card, a ZigBee sensor network and WiMAX", Sensors, vol. 14, no. 12, pp. 24408-24424, 2014 (doi: 10.3390/s141224408).
- [7] C. P. Kruger, A. M. Abu-Mahfouz, and G. P. Hancke, „Rapid prototyping of a wireless sensor network gateway for the internet of things using off-the-shelf components", in Proc. IEEE Int. Conf. on Industr. Technol. ICIT 2015, Seville, Spain, 2015, pp. 1926-1931 (doi: 10.1109/ICIT.2015.7215378).
- [8] A. D. Deshmukh and U. B. Shinde, „A low cost environment monitoring system using Raspberry Pi and Arduino with Zigbee", in Proc. Int. Conf. on Invent. Comput. Technol. ICICT 2016, Coimbatore, India, 2016, vol. 3, pp. 1-6 (doi: 10.1109/INVENTIVE.2016.7830096).
- [9] A. Gupta and R. K. Jha, „A survey of 5G network: architecture and emerging technologies", IEEE Access, vol. 3, pp. 1206-1232, 2015 (doi: 10.1109/ACCESS.2015.2461602).
- [10] K. Kowalik et al., „Lessons learned from WiMAX deployment at INEA", J. of Telecommun. and Inform. Technol., no. 3, pp. 34-41, 2014.
- [11] B. Musznicki, K. Kowalik, P. Kołodziejski, and E. Grzybek, „Mobile and residential INEA Wi-Fi hotspot network", in 13th Int. Symp. on Wirel. Commun. Syst. ISWCS 2016, Pozna«, Poland, 2016 (arXiv:1608.06606).
- [12] A. Kliks, B. Musznicki, K. Kowalik, and P. Kryszkiewicz, „Perspectives for Resource Sharing in 5G Networks", Telecommun. Syst., vol. 68, no. 4, pp. 05-619, 2018 (doi: 10.1007/s11235-017-0411-3).
- [13] L. Atzori, A. Iera, and G. Morabito, „From „smart objects" to „social objects": the next evolutionary step of the Internet of Things", IEEE Commun. Mag., vol. 52, no. 1, pp. 97-105, 2014 (doi: 10.1109/MCOM.2014.6710070).
- [14] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, „Context aware computing for The Internet of Things: A Survey", IEEE Commun. Surv. & Tutor., vol. 16, no. 1, pp. 414-454, 2014 (doi: 10.1109/SURV.2013.042313.00197).
- [15] M. Díaz, C. Martín, and B. Rubio, „State-of-the-art, challenges, and open issues in the integration of Internet of Things and cloud computing", J. of Netw. and Comp. Appl., vol. 67, pp. 99-117, 2016 (doi: 10.1016/j.jnca.2016.01.010).
- [16] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, „Internet of Things (IoT): A vision, architectural elements, and future directions", Future Gener. Comp. Syst., vol. 29, no. 7, pp. 1645-1660, 2013 (doi: 10.1016/j.future.2013.01.010).
- [17] C. P. Kruger and G. P. Hancke, „Implementing the Internet of Things Vision in Industrial Wireless Sensor Networks", in Proc. 12th IEEE Int. Conf. on Industr. Informat. INDIN 2014, Porto Alegre, Brazil, 2014, pp. 627-632 (doi: 10.1109/INDIN.2014.6945586).
- [18] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, „Internet of Things: A survey on enabling technologies, protocols, and applications", IEEE Commun. Surv. & Tutor., vol. 17, no. 4, pp. 2347-2376, 2015 (doi: 10.1109/COMST.2015.2444095).
- [19] B. Musznicki and P. Zwierzykowski, „Survey of simulators for wireless sensor networks", Int. J. of Grid and Distrib.Comput., vol. 5, no. 3, pp. 23-50, 2012.
- [20] M. Głąbowski, B. Musznicki, P. Nowak, and P. Zwierzykowski, „An in-depth discussion of challenges related to solving shortest path problems using ShortestPathACO based algorithms", in Information Systems Architecture and Technology; Knowledge Based Approach to the Design, Control and Decision Support, J. .wi¡tek, L. Borzemski, A. Grzech, and Z. Wilimowska, Eds.Wrocław, Poland: Oficyna Wydawnicza Politechniki Wrocławskiej, 2013, pp. 77-88 (ISBN: 978-83-7493-802-0).
- [21] M. Stein, T. Petry, I. Schweizer, M. Brachmann, and M. Mühlhäuser, „Topology control in wireless sensor networks: What blocks the breakthrough?", in Proc. 41st Conf. on Local Comp. Netw. LCN 2016, Dubai, United Arab Emirates, 2016, pp. 389-397 (doi: 10.1109/LCN.2016.67).
- [22] D. Chaładyniak and J. Grzybowski, „Wybrane metody diagnozowania nieprawidłowości działania sieci teleinformatycznych", Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki, vol. 6, no. 8, pp. 61-76, 2012 [in Polish].
- [23] M. Głąbowski, B. Musznicki, P. Nowak, and P. Zwierzykowski, „Shortest path problem solving based on ant colony optimization metaheuristic", Int. J. of Image Process. & Commun., Special Issue: Algorithms and Protocols in Packet Networks, vol. 17, no. 1-2, pp. 7-17, 2012 (doi: 10.2478/v10248-012-0011-5).
- [24] Ł. Skibniewski and J. Furtak, „Zdalne laboratorium sieciowe", Biuletyn Instytutu Automatyki i Robotyki, vol. 32, 18, pp. 3-22, 2012 [in Polish].
- [25] M. Stasiak and M. Michalski, „Algorytmy wspomagające projektowanie pierścieniowych sieci optycznych", in Poznańskie Warsztaty Telekomunikacyjne PWT 2003, Poznań, Poland, 2003, pp. 121-126 [in Polish].
- [26] P. Santi, Topology Control in Wireless Ad Hoc and Sensor Networks. Chichester: Wiley, 2005.
- [27] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, „Topology management for sensor networks: exploiting latency and density", in Proc. 3rd ACM Int. Symp. on Mob. Ad Hoc Network. & Comput. MobiHoc 2002, Lausanne, Switzerland, 2002, pp. 135-145 (doi: 10.1145/513800.513817)
- [28] M. Younis, I. F. Senturk, K. Akkaya, S. Lee, and F. Senel, „Topology management techniques for tolerating node failures in wireless sensor networks: A survey", Comp. Netw., vol. 58, no. 1, pp. 254-283, 2014 (doi: 10.1016/j.comnet.2013.08.021).
- [29] G. Sosnowski, „Przegląd algorytmów dynamicznego zarządzania topologią w bezprzewodowych, ruchomych sieciach ad hoc", in Poznańskie Warsztaty Telekomunikacyjne PWT 2005, Poznań, Poland, 2005 [in Polish].
- [30] J. Zhao and G. Cao, „Robust topology control in multi-hop cognitive radio networks", IEEE Trans. on Mob. Comput., vol. 13, no. 11, pp. 2634-2647, 2014 (doi: 10.1109/TMC.2014.2312715).
- [31] K. Moon, D.-S. Yoo, W. Lee, and S.-J. Oh, „Receiver cooperation in topology control for wireless ad-hoc networks", IEEE Trans. on Wirel. Commun., vol. 14, no. 4, pp. 1858-1870, 2015 (doi: 10.1109/TWC.2014.2374617).
- [32] M. A. Labrador and P. M. Wightman, Topology Control in Wireless Sensor Networks: With a Companion Simulation Tool for Teaching and Research. Springer, 2009 (ISBN: 978-1-4020-9584-9).
- [33] A. A. Aziz, Y. A. Sekercioglu, P. Fitzpatrick, and M. Ivanovich, „A survey on distributed topology control techniques for extending the lifetime of battery powered wireless sensor networks", IEEE Commun. Surv. & Tutor., vol. 15, no. 1, pp. 121-144, 2013 (doi: 10.1109/SURV.2012.031612.00124).
- [34] M. Li, Z. Li, and A. Vasilakos, „A survey on topology control in wireless sensor networks: taxonomy, comparative study, and open issues", Proc. of the IEEE, vol. 101, no. 12, pp. 2538-2557, 2013 (doi: 10.1109/JPROC.2013.2257631).
- [35] E. Niewiadomska-Szynkiewicz, P. Kwaśniewski, and I. Windyga, „Comparative study of wireless sensor networks energy-efficient topologies and power save protocols", J. of Telecommun. and Inform. Technol., no. 3, pp. 68-76, 2009.
- [36] Y. Huang, J.-F. Martínez, V. H. Díaz, and J. Sendra, „A novel topology control approach to maintain the node degree in dynamic wireless sensor networks", Sensors, vol. 14, no. 3, pp. 4672-4688, 2014 (doi: 10.3390/s140304672).
- [37] I. Yoon, D. K. Noh, and H. Shin, „Energy-aware hierarchical topology control for wireless sensor networks with energy-harvesting nodes", Int. J. of Distrib. Sensor Netw., vol. 11, no. 6, 2015 (doi: 10.1155/2015/617383).
- [38] B. Chen and L. Wang, „An interference prediction-based topology control algorithm for 3-D wireless sensor networks", J. of Computat. Inform. Syst., vol. 7, no. 4, pp. 1198-1205, 2011 (doi: 10.1109/ICISE.2010.5689350).
- [39] S. S. Dhillon and K. Chakrabarty, „Sensor placement for effective coverage and surveillance in distributed sensor networks, in Proc. IEEE Wirel. Commun. and Network. WCNC 2003, New Orleans, LA, USA, 2003, vol. 3 (doi: 10.1109/WCNC.2003.1200627).
- [40] J. Ai and A. A. Abouzeid, „Coverage by directional sensors in randomly deployed wireless sensor networks", J. of Combinator. Optimiz., vol. 11, no. 1, pp. 21-41, 2006 (doi: 10.1007/s10878-006-5975-x).
- [41] B. Musznicki, M. Tomczak, and P. Zwierzykowski, „Dijkstra-based localized multicast routing in wireless sensor networks", in Proc. 8th Int. Symp. on Commun. Syst., Netw. and Digit. Sig. Process. CSNDSP 2012, Pozna«, Poland, 2012 (doi: 10.1109/CSNDSP.2012.6292692).
- [42] M. E. M. Campista and M. G. Rubinstein, Advanced Routing Protocols for Wireless Networks. Chichester: Wiley, 2014 (ISBN: 978-1-848-21627-3).
- [43] Q. Mamun, „A qualitative comparison of different logical topologies for wireless sensor networks", Sensors, vol. 12, no. 11, pp. 14887-14913, 2012 (doi: 10.3390/s121114887).
- [44] X. Liu, „A survey on clustering routing protocols in wireless sensor networks", Sensors, vol. 12, no. 8, pp. 11113-11153, 2012 (doi: 10.3390/s120811113).
- [45] G. Werner-Allen et al., „Deploying a wireless sensor network on an active volcano", IEEE Internet Comput., vol. 10, no. 2, pp. 18-25, 2006 (doi: 10.1109/MIC.2006.26).
- [46] H. Zhang and J. C. Hou, „Is deterministic deployment worse than random deployment for wireless sensor networks?", in Proc. 25th IEEE Int. Conf. on Comp. Commun. INFOCOM 2006, Barcelona, Spain, 2006, pp. 1-13 (doi: 10.1109/INFOCOM.2006.290).
- [47] S. N. Simić and S. Sastry, „Distributed environmental monitoring using random sensor networks" in Information Processing in Sensor Networks: Second International Workshop, IPSN 2003, Palo Alto, CA, USA, April 2003, Proceedings, F. Zhao and L. Guibas, Eds. LNCS, vol. 2634, pp. 582-592. Berlin Heidelberg: Springer, 2003.
- [48] K. Römer and F. Mattern, „The design space of wireless sensor networks", IEEE Wireless Commun., vol. 11, no. 6, pp. 54-61, 2004 (doi: 10.1109/MWC.2004.1368897).
- [49] A. Howard, M. J. Matarić, and G. S. Sukhatme, „An incremental self-deployment algorithm for mobile sensor networks", Autonomous Robots, vol. 13, no. 2, pp. 113-126, 2002 (doi: 10.1023/A:1019625207705).
- [50] H. Gao et al., „High speed data routing in vehicular sensor networks", J. of Commun., vol. 5, no. 3, pp. 181-188, 2010 (doi: 10.4304/jcm.5.3.181-188).
- [51] M. Wooldridge and N. R. Jennings, „Intelligent agents: theory and practice", The Knowl. Engin. Rev., vol. 10, no. 2, pp. 115-152, 1995 (doi: 10.1017/S0269888900008122).
- [52] U. Lee and M. Gerla, „A survey of urban vehicular sensing platforms", Computer Netw., vol. 54, no. 4, pp. 527-544, 2010 (doi: 10.1016/j.comnet.2009.07.011).
- [53] „IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE Std 802.11.-2012, 29 March 2012 [Online]. Available: https://www.iith.ac.in/ tbr/teaching/docs/802.11-2007.pdf
- [54] K. Kowalik, A. Kliks, B. Musznicki, M. Kołodziejski, and P. Kryszkiewicz, „Observation of WiMAX Radio Parameters to Enhance Spectrum Utilisation in Mixed Environment", J. of Telecommun. and Inform. Technol., no. 1, pp. 42-50, 2018 (doi: 10.26636/jtit.2018.123917).
- [55] H. Conceição, M. Ferreira, and J. Barros, „On the urban connectivity of vehicular sensor networks", in Distributed Computing in Sensor Systems, 4th IEEE International Conference, DCOSS 2008, Santorini Island, Greece, June 11-14, 2008, Proceedings, S. E. Nikoletseas, B. S. Chlebus, D. B. Johnson, and B. Krishnamachari, Eds. LNCS, vol. 5067, pp. 112-125. Berlin Heidelberg: Springer, 2008 (doi: 10.1007/978-3-540-69170-9 8).
- [56] M. Boban, T. T. Vinhoza, M. Ferreira, J. Barros, and O. K. Tonguz, „Impact of vehicles as obstacles in vehicular ad hoc networks", IEEE J. on Selec. Areas in Commun., vol. 29, no. 1, pp. 15-28, 2011 (doi: 10.1109/JSAC.2011.110103).
- [57] A. Cardote, S. Sargento, and P. Steenkiste, „On the connection availability between relay nodes in a VANET", in Proc. IEEE Globecom Worksh. GC Wkshps 2010, Miami, FL, USA, 2010, pp. 181-185 (doi: 10.1109/GLOCOMW.2010.5700255).
- [58] C. Ameixieira et al., „HarborNet: A real-world testbed for vehicular networks", IEEE Commun. Mag., vol. 52, no. 9, pp. 108-114, 2014 (doi: 10.1109/MCOM.2014.6894460).
- [59] „Creating The World's Largest Network of Connected Vehicles for Smart Cities" [Online]. Available: https://www.worldwifiday.com/ wp-content/uploads/2016/05/3.-PortoCaseStudy Letter 2016-04- 15.pdf
- [60] „IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements", IEEE Std 802.11p.-2010, 15 July 2010.
- [61] R. C. Shah, S. Roy, S. Jain, and W. Brunette, „Data MULEs: Modeling and Analysis of a Three-tier Architecture for Sparse Sensor Networks", Ad Hoc Netw., vol. 1, no. 2, pp. 215-233, 2003 (doi: 10.1016/S1570-8705(03)00003-9).
- [62] P. Santos et al., „Demo abstract: Experiments on using vehicles as data mules for data collection from urban sensors", in Proc. 12th Eur. Conf. on Wirel. Sensor Netw. EWSN 2015, Porto, Portugal, 2015, pp. 17-18.
- [63] „CityMobil2 Experience and Recommendations" [Online]. Available: https://www.polisnetwork.eu/ CityMobil2%20booklet%20web%20_nal 17%2011%202016.pdf
- [64] A. Alessandrini, A. Cattivera, C. Holguin, and D. Stam, „CityMobil2: Challenges and opportunities of fully automated mobility" in Road Vehicle Automation, G. Meyer and S. Beiker, Eds. Springer, 2014, pp. 169-184 (doi: 10.1007/978-3-319-05990-7).
- [65] L. Krishnamurthy et al., „Design and deployment of industrial sensor networks: experiences from a semiconductor plant and the North Sea", in Proc. 3rd Int. Conf. on Embed. Network. Sensor Syst. SenSys 2005, San Diego, CA, USA, 2005, pp. 64-75 (doi: 10.1145/1098918.1098926).
- [66] J. Yick, B. Mukherjee, and D. Ghosal, „Wireless sensor network survey", Computer Netw., vol. 52, no. 12, pp. 2292-2330, 2008 (doi: 10.1016/j.comnet.2008.04.002).
- [67] C. Gomez and J. Paradells, „Wireless home automation networks: A survey of architectures and technologies", IEEE Commun. Mag., vol. 48, no. 6, pp. 92-101, 2010 (doi: 10.1109/MCOM.2010.5473869).
- [68] T. Zachariah, N. Klugman, B. Campbell, J. Adkins, N. Jackson, and P. Dutta, „The Internet of Things has a gateway problem", in Proc. 16th Int. Worksh. on Mobile Comput. Syst. and Appl. HotMobile 2015, Santa Fe, New Mexico, USA, 2015, pp. 27-32 (doi: 10.1145/2699343.2699344).
- [69] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke, „Smart grid technologies: Communication technologies and standards", IEEE Trans. on Industr. Informat., vol. 7, no 4, pp. 529-539, 2011 (doi: 10.1109/TII.2011.2166794).
- [70] L. Quan-Xi and L. Gang, „Design of remote automatic meter reading system based on ZigBee and GPRS", in Proc. 3rd Int. Symp. on Comp. Sci. and Computat. Technol. ISCSCT 2010, Jiaozuo, China, 2010, vol. 2, pp. 186-189.
- [71] Cisco openBerlin Innovation Center [Online]. Available: https://www.cisco.com/c/m/de de/innovationcenter/berlin.html
- [72] „IEEE Standard for Local and metropolitan area networks - Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)", IEEE Std 802.15.4-2011, 5 September 2011 [Online]. Available: https://standards.ieee.org/standard/802 15 4-2011.html
- [73] „Series G: Transmission Systems and Media, Digital Systems and Networks - Access networks - In premises networks - Short range narrow-band digital radiocommunication transceivers - PHY, MAC, SAR and LLC layer specifications", Recommendation ITU-T G.9959, 2015 [Online]. Available: https://www.itu.int/rec/ T-REC-G.9959/en
- [74] C. Gomez and J. Paradells, „Wireless home automation networks: A survey of architectures and technologies", IEEE Commun. Mag., vol. 48, no. 6, pp. 92-101, 2010 (doi: 10.1109/COM.2010.5473869).
- [75] D. R. Moogk, „Minimum viable product and the importance of experimentation in technology startups", Technol. Innov. Manag. Rev., vol. 2, no. 3, pp. 23-26, 2012 (doi: 10.22215/timreview/535).
- [76] P. Walkowiak, R. Szalski, B. Musznicki, D. Dudek, K. Kowalik, and P. Zwierzykowski, „Evaluation of CARMNET System in INEA HOTSPOT Network", in Proc. IEICE Inform. and Commun. Technol. Forum ICTF 2014, Pozna«, Poland, 2014 (doi: 10.13140/2.1.2751.4567).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cf2fab7-bda3-484f-aa60-67986fe321f3