PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lithospheric structure of the Arabian Shield from joint inversion of P- and S-wave receiver functions and dispersion velocities

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New velocity models of lithospheric thickness and velocity structure have been developed for the Arabian Shield by three tasks: 1) Computing P-Wave Receiver Functions (PRFs) and S-Wave Receiver Functions (SRFs) for all the broadband stations within the Saudi seismic networks. The number of receiver function waveforms depends on the recording time window and quality of the broadband station. 2) Computing ambient noise correlation Green’s functions for all available station pairs within the Saudi seismic networks to image the shear velocity in the crust and uppermost mantle beneath the Arabian Peninsula. Together they provided hundreds of additional, unique paths exclusively sampling the region of interest. Both phase and group velocities for all the resulting empirical Green’s functions have been measured and to be used in the joint inversion. 3) Jointly inverted the PRFs and SRFs obtained in task 1 with dispersion velocities measured on the Green’s functions obtained in task 2 and with fundamental-mode, Rayleigh-wave, group and phase velocities borrowed from the tomographic studies to precisely determine 1D crustal velocity structure and upper mantle. The analysis of the PRFs revealed values of 25 - 45 km for crustal thickness, with the thin crust next to the Red Sea and Gulf of Aqaba and the thicker crust under the platform, and Vp/Vs ratios in the 1.70 – 1.80 range, suggesting a range of compositions (felsic to mafic) for the shield’s crust. The migrated SRFs suggest lithospheric thicknesses in the 80-100 km range for portions of the shield close to the Red Sea and Gulf of Aqaba and near the Arabian Gulf. Generally, the novelty of the velocity models developed under this paper has consisted in the addition of SRF data to extend the velocity models down to lithospheric and sub-lithospheric depths.
Rocznik
Strony
227--243
Opis fizyczny
Bibliogr. 40 poz., il.
Twórcy
  • Department of Geology & Geophysics, King Saud University, Riyadh, Saudi Arabia
Bibliografia
  • 1. Al-Amri, A.M. 1998. The crustal structure of the western Arabian Platform from the spectral analysis of long-period P-wave amplitude ratios. Tectonophysics, 290, 271–283.
  • 2. Al-Damegh, K., Sandvol, E. and Barazangi, M. 2005. Crustal structure of the Arabian plate: New constraints from the analysis of teleseismic receiver functions. Earth and Planetary Science Letter, 231, 177–196.
  • 3. Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M. and Yang, Y. 2007. Processing seismic ambient noise data to obtain reliable broadband surface wave dispersion measurements. Geophysical Journal International, 169, 1239–1260.
  • 4. Camp, V.E. and Roobol, M.J. 1992. Upwelling asthenosphere beneath western Arabia and its regional implications. Journal of Geophysical Research, 97, 15255–15271.
  • 5. Cassidy, J. 1992. Numerical experiments in broadband receiver function analysis. Bulletin of the Seismological Society of America, 82, 1453–1474.
  • 6. Crotwell, H.P., Owens, T.J. and Ritsema, J. 1999. The TauP Toolkit: Flexible seismic travel-time and ray-path utilities. Seismological Research Letters, 70, 154–160.
  • 7. Debayle, E., Leveque, J. and Cara, M. 2001. Seismic evidence for a deeply rooted low-velocity anomaly in the upper mantle beneath the northeastern Afro/Arabian continent. Earth and Planetary Science Letter, 193, 423–436.
  • 8. Dugda, M.T., Nyblade, A.A. and Julià, J. 2007. Thin Lithosphere Beneath the Ethiopian Plateau Revealed by a Joint Inversion of Rayleigh Wave Group Velocities and Receiver Functions. Journal of Geophysical Research, 112, B08308, doi:10.1029/2006JB004918.
  • 9. Durrheim, R. and Mooney W. 1991. Archean and Proterozoic crustal evolution: Evidence from crustal Seismology. Geology, 19, 606–609.
  • 10. Dziewonski, A. and Anderson, D. 1980. Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.
  • 11. Efron, B. and Tibshirani, R. 1991. Statistical data analysis in the computer age. Science, 253, 390–395.
  • 12. Ekström, G., Tromp, J. and Larson, E. 1997. Measurements and global models of surface wave propagation. Journal of Geophysical Research, 102, 8137-8157.
  • 13. Hansen, S., Rodgers, A., Schwartz, S. and Al-Amri, A. 2007. Imaging Ruptured lithosphere beneath the A. Red Sea and Arabian Peninsula. Earth and Planetary Science Letter, 259, 256-265
  • 14. Julià, J., Ammon, C.J. and Herrmann, R.B. 2003. Lithospheric structure of the Arabian shield from the joint inversion of receiver functions and surface-wave group velocities. Tectonophysics, 371, 1–21.
  • 15. Julià, J., Assumpção, M. and Rocha, M. P. 2008. Deep crustal structure of the Paraná Basin fromreceiver functions and Rayleigh-wave dispersion: Evidence for a fragmented cratonic root. Journal of Geophysical Research, 113, B08318, doi: 10.1029/2007JB005374.
  • 16. Julià, J., Jagadeesh, S., Rai, S.S. and Owens, T.J. 2009. Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: Implications for Precambrian crustal evolution. Journal of Geophysical Research, 114, B10313, doi:10.1029/ 2007JB006261.
  • 17. Julià, J., Ammon, C.J. and Nyblade, A.A. 2005. Evidence for mafic lower crust in Tanzania, East Africa, from joint inversion of receiver functions and Rayleigh wave dispersion velocities. Geophysical Journal International, 162, 555–569.
  • 18. Karato, S.I. 2003. The Dynamic Structure of the Deep Earth. An Interdisciplinary Approach, 241 pp. Princeton University Press.
  • 19. Keranen, K.M., Klemperer, S.L., Julià, J., Lawrence, J.F. and Nyblade, A.A. 2009. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton? Geochemistry, Geophysics, Geosystems, 10, Q0AB01, doi:10.1029//2008GC002293.
  • 20. Kgaswane, E., Nyblade, A.A., Julià, J., Dirks, P., Durrheim, R.J. and Pasyanos, M. 2009. Shear wave velocity structure of the lower crust in southern Africa: Evidence for compositional heterogeneity within Archaean and Proterozoic terrains. Journal of Geophysical Research, 114, B12304, doi:10.1029/2008JB00621.
  • 21. Langston, C.A. 1979. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. Journal of Geophysical Research, 84, 4749–4762
  • 22. Larose, E., Derode, A., Campillo, M. and Fink, M. 2004. Imaging from one- bit correlations of wideband diffuse wavefields. Journal of Applied Physics, 95, 8393–8399.
  • 23. Levin, V. and Park, J. 1997. P-SH conversions in a flat-layered medium with anisotropy of arbitraryorientation. Geophysical Journal International, 131, 253–266.
  • 24. Ligorría, J.P. and Ammon, C.J. 1999. Poisson’s ratio variations of the crust beneath North America. Seismological Research Letters, 70, 274.
  • 25. Lin, F., Moschetti, M.P. and Ritzwoller, M.H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International
  • 26. Matzel, E. 2008. Attenuation tomography using ambient noise correlation. Seismological Research Letters, 79, 358
  • 27. Mooney, M., Gettings, H., Blank, J. and Healy, H. 1985. Saudi Arabian seismic refraction profile: A traveltime interpretation of crustal and upper mantle structure. Tectonophysics , 111, 173–246.
  • 28. Moschetti, M.P., Ritzwoller, M. H. and Shapiro, N. M. 2007. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 8, Q08010.
  • 29. Nolet, G. 1990. Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. Journal of Geophysical Research , 95 (B6), 8499–8512.
  • 30. Pasyanos, M.E. 2005. A variable resolution surface wave dispersion study of Eurasia, North Africa, and surrounding regions. Journal of Geophysical Research, 110, doi: 10.1029/2005JB003749.
  • 31. Pasyanos, M.E., Walter, W.R. and Matzel, E.M. 2009b. A simultaneous multi-phase approach to determine P-wave and S-wave attenuation of the crust and upper mantle. Bulletin of the Seismological Society of America, 99-6, doi: 10.1785/0120090061
  • 32. Prieto, G.A. and Beroza, G.C. 2008. Earthquake ground motion prediction using the ambient seismic field. Geophysical Research Letters, 35, L14304.
  • 33. Sen, M. and Stoffa, P.L. 1995. Global optimization methods in geophysical inversion. Elsevier. Amsterdam.
  • 34. Randall, G.E. 1994. Efficient calculation of complete differential seismograms for laterally homogeneous earth models. Geophysical Journal International, 118, 245–254.
  • 35. Shapiro, N.M., Campillo, M., Stehly, L. and Ritzwoller, M.H. 2005. High-Resolution surface wave tomography from ambient seismic noise. Science, 307, 1615–1618
  • 36. Sodoudi, F. 2005. Lithospheric structure of the Aegean obtained from P and S receiver functions, PhD Thesis, Freie Universitat Berlin.
  • 37. Stoeser, D. and Camp, V. 1985. Pan-African microplate accretion of the Arabian Shield. Geological Society of America Bulletin, 96, 817–826.
  • 38. Tkalcic, H., Pasyanos, M., Rodgers, A., Gok, R., Walter, W. and Al-Amri, A. 2006. A multi-step approach in joint modeling of surface wave dispersion and teleseismic receiver functions: Implications for lithospheric structure of the Arabian Peninsula. Journal of Geophysical Research, 111, doi: 10.1029/2005 JB 004130.
  • 39. Wilson, D., Angus, D., Ni, J. and Grand, S. 2006. Constraints on the interpretation of S-to-P receiver functions. Geophysical Journal International, 165, 969–980.
  • 40. Zhu, H. and Kanamori, H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research, 105, 2969–2980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cf2608a-3261-453d-9450-520f378d1265
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.