PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relationship Between Vegetation Succession and Earthworm Population in Vineyards

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine the effect of succession of vegetation on the population of earthworms in selected vineyards. Earthworms (Annelida, Lumbricidae) are an important group of soil invertebrates. The population of earthworms in vineyards is influenced by environmental conditions and human activities. The presence of earthworms is beneficial to the ecosystem of vineyards. Earthworms aerate the soil, improving the quality and structure of the soil in vineyards. They decompose organic matter, contribute to the formation of humus, and increase the soil fertility. Vegetation cover in vineyards affects earthworm populations. The vegetation species spectrum in the vineyard changes over time, as succession is controlled by human activity. The research took place between the years 2020 and 2023 in the wine-growing villages of Horní Dunajovice, Hostěradice, Miroslav and Miroslavská Knínice (Czech Republic). 4 species of earthworms have been recorded. Aporrectodea caliginosa and A. rosea occurre frequently in younger vineyards. Annual dicots supported the occurrence of Aporrectodea caliginosa and A. rosea. Lumbricus terrestris and L. rubellus are more common in older vineyards. Perennial species supported the occurrence of Lumbricus terrestris and L. rubellus. The annual grasse contributed to the occurrence of Lumbricus rubellus. Changes in the composition of the vineyard vegetation affect the occurrence of the observed species of earthworms.
Słowa kluczowe
Rocznik
Strony
134--144
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
  • Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
  • Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
  • Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
  • University Hospital Brno, Jihlavská 20, Brno 625 00, Czech Republic
autor
  • Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Bibliografia
  • 1. Bardgett R.D., Van Der Putten W.H. 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 7528, 505–511.
  • 2. Bengtsson J., Ahnstrom J., Weibull A.C., 2005. The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology 42, 261–269.
  • 3. Bhadauria, T., Saxena K.G. 2010. Role of earthworms in soil fertility maintenance through the production of biogenic structures. Applied and Environmental Soil Science 41, 816073.
  • 4. Blanco-Canqui H., Shaver T.M., Lindquist J.L., Shapiro C.A., Elmore R.W., Francis C.A., Hergert G.W. 2015. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agronomy Journal 107, 2449–2474.
  • 5. Blouin M., Sery N., Cluzeau D., Brun J-J., Bédécarrats A. 2013. Balkanized Research in Ecological Engineering Revealed by a Bibliometric Analysis of Earthworms and Ecosystem Services. Environmental Management 52, 309–320.
  • 6. Bot A., Benites J. 2005. Organic matter decomposition and the soil food web. In The Importance of Soil Organic Matter—Key to Drought Resistant Soil and Sustained Food Production; Bot A., Benites J., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 5–10.
  • 7. Capello G., Biddoccu M., Cavallo E., 2020. Permanent cover for soil and water conservation in mechanized vineyards: A study case in Piedmont, NW Italy. Italian Journal of Agronomy 15, 323–331.
  • 8. Capowiez Y., Cadoux S., Bouchant P., Ruy S., Roger-Estrade J., Richard G., Boizard H. 2009. The effect of tillage type and cropping system on earthworm communities, macroporosity and water inf iltration. Soil and Tillage Research 105, 209–216.
  • 9. Cenci R.M., Jones R.J.A. 2009. Holistic approach to biodiversity and bioindication in soil. EUR 23940 EN, Office for the Official Publications of the European Communities.
  • 10. CGS. Geological Map of the Czech Republic, 1:50 000. 2018. Czech Geological Society: Prague, Czech Republic, Available online: https://mapy. geology.cz/geocr50/.
  • 11. CGS. Map of Soil Types of the Czech Republic, 1:50 000. 2017. Czech Geological Society: Prague, Czech Republic,. Available online: https:// mapy.geology.cz/pudy/.
  • 12. Chalkia, C., Vavoulidou, E., Csuzdi, C., Emmanouil, C., Dritsoulas, A., Katsileros, A., 2021. Observations on earthworm communities and soils in various natural and man-affected ecosystems. Soil syst. 5, 71.
  • 13. Coll P., Le Cadre E., Blanchart E., Hinsinger P.,Villenave, C. 2011. Organic viticulture and soil quality: a long-term study in Southern France. Applied Soil Ecology 50, 37–44.
  • 14. Culek, M. (Ed.). 1996. Biogeographical Division of the Czech Republic (Biogeografické členění České republiky), 1st ed.; Enigma: Prague, Czech Republic, 347. (In Czech).
  • 15. Cuendet G. 2009. Identification des Lombriciens de Suisse. Vauderens (Suisse), 21.
  • 16. Doran J.W., Zeiss M.R. 2000. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15, 3–11.
  • 17. Eijsackers H., Beneke P., Maboeta M., Louw J.P.E., Reinecke A.J. 2005. The implications of copper fungicide usage in vineyards for earthwormactivity and resulting sustainable soil quality. Ecotoxicology and Environmental Safety 62, 99–111.
  • 18. Eisenhauer N., Milcu A., Sabais A.C.W., Bessler H., Weigelt A., Engels, C., Scheu S. 2009. Plant community impacts on the structure of earthworm communities depend on season and change with time. Soil Biology & Biochemistry 41, 2430–2443.
  • 19. El Titi A. 2003. Implications of soil tillage for weed communities. In: El Titi, A. (Ed.), Soil Tillage in Agroecosystems. CRC Press, Boca Raton, 147–185.
  • 20. Ernst G., Emmerling C. 2009. Impact of five different tillage types on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. European Journal of Soil Biology 45, 247e251.
  • 21. Farenhorst A., Tomlin A.D., Bowman B.T. 2003. Impact of herbicide application rates and crop residue type on earthworm weights. Bulletin of Environmental Contamination and Toxicology 70, 477–484.
  • 22. Floch C., Capowiez Y., Criquet S. 2009. Enzyme activities in apple orchard agroecosystems: how are they affected by management strategy and soil properties. Soil Biology & Biochemistry 41, 61–68.
  • 23. Fonte S.J., Winsome T., Six J. 2009. Earthworm populations in relation to soil organic matter dynamics and management in California tomato cropping systems. Applied Soil Ecology 41, 206–214.
  • 24. Freemark K., Boutin C. 1995. Impacts of agricultural herbicide use on terrestrial wildlife intemperate landscapes: a review withspecial reference to NorthAmerica. Agriculture, Ecosystems & Environment 52, 67–91.
  • 25. Giese G., Wolf T.K., Velasco-Cruz C., Roberts L., Heitman J. 2015. Cover crop and root pruning impacts on vegetative growth, crop yield components, and grape composition of Cabernet Sauvignon. American Journal of Enology and Viticulture 66(2), 212–226.
  • 26. Giffard B., Winter S., Guidoni S., Nicolai A., Castaldini M., Cluzeau D., Coll P. Cortet J., Le Cadre E., D’Errico G., et al. 2022. Vineyard management and its impacts on soil biodiversity, functions, and ecosystem services. Frontiers in Ecology and Evolution, 10, 850272.
  • 27. Gorzerino C., Quemeneur A., Hillenweck A., Baradat M., Delous G., Ollitrault M., Azam D., Caquet T., Lagadic L. 2009. Effects of diquat and fomesafen applied alone and in combination with a nonylphenol polyethoxylate adjuvant on Lemna minor in aquatic indoor microcosms. Ecotoxicology and Environmental Safety 72, 802–810.
  • 28. Griesser M., Steiner M., Pingel M., Uzman D., Preda C., Giffard B., Tolle P., Memedemin D., Forneck A., Reineke A., Leyer I., Bacher S. 2022. General trends of different inter-row vegetation management affecting vine vigor and grape quality across european 445 vineyards. Agriculture, Ecosystems & Environment 338, 108073.
  • 29. Hickey C.C., Hatch T.A., Stallings J., Wolf T.K. 2016. Under-trellis cover crop and rootstock affect growth, yield components, and fruit composition of cabernet sauvignon. American Journal of Enology and Viticulture 67(3), 281–295.
  • 30. Hole D.G., Perkins A.J., Wilson J.D., Alexander I.H., Grice P.V., Evans A.D. 2005. Does organic farming benefit biodiversity? Biological Conservation 122, 113–130.
  • 31. Chan K.Y., Munro K. 2001. Evaluating mustard extracts for earthworm sampling. Pedobiology 45, 272–278.
  • 32. Ivask M., Kuu A., Sizov E. 2007. Abundance of earthworm species in Estonian arable soils. European Journal of Soil Biology 43, 39–42.
  • 33. Kaplan Z., Danihelka J., Chrtek J., Kirschner J., Kubát K., Štěch, M. Štěpánek J. (Eds.). 2019. Key to the Flora of the Czech Republic, 2nd Ed.; Academia: Prague, Czech Republic, 1168. (In Czech)
  • 34. Karn R., Hillin D., Helwi P., Scheiner J., Guo W. 2024. Assessing grapevine vigor as affected by soil physicochemical properties and topographic attributes for precision vineyard management. Scientia Horticulturae 328, 112857.
  • 35. Kudsk P., Streibig J.C. 2003. Herbicides – a two-edged sword. Weed Research. 43, 90–102.
  • 36. Lacas J.G., Voltz M., Gouy V., Carluer N., Gril J.J. 2005. Using grassed strips to limit pesticide transfer to surface water: a review. Agronomy for Sustainable Development 25, 253–266.
  • 37. Langmaack M., Schrader S., Rapp-Bernhardt, U., Kotzke K. 1999. Quantitative analysis of earthworm burrow systems with respect to biological soil-structure regeneration after soil compaction.Biology and Fertility of Soils 28, 219–229.
  • 38. Lavelle P., Charpentier F., Villenave C., Rossi J.P., Derouard L., Pashanasi B., André J., Ponge J.F., Bernier N. 2004. Effects of earthworms on soil organic matter and nutrient dynamics at a landscape scale over decades. In: Earthworm Ecology, 2nd Ed.; Edwards, C.A., (Ed.); CRC Press: Boca Raton, FL, USA, 145–160.
  • 39. Lavelle P., Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P., Rossi J.P., 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42, 3–15.
  • 40. Leeuwen V.C., Tregoat O., Chone X., Bois B., Pernet D., Gaudillere J.P. 2009. Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? Oeno One 43(3), 121–134.
  • 41. Li Y., Ghodrati M. 1995. Transport of nitrate in soil as affected by earthworm activities. Journal of Environmental Quality 24, 432–438.
  • 42. Lieskovský J., Kenderessy P., Petlušová V., Petluš P. 2024. Effect of grass cover and abandonment on soil surface changes and soil properties in traditional vineyards in Vráble viticultural region in southwestern Slovakia, CATENA 235, 107702.
  • 43. Marques M., Ruiz-Colmenero, M., Bienes R., García-Díaz A., Sastre B. 2020. Effects of a permanent soil cover on water dynamics and wine characteristics in a steep vineyard in the Central Spain. Air, Soil and Water Research 13, 1178622120948069.
  • 44. Marshall E.J.P., Brown V.K., Boatman N.D., Lutman P.J.W., Squire G.R., Ward L.K. 2003. The role of weeds in supporting biological diversity within crop fields. Weed Research 43, 77–89.
  • 45. Marwitz A., Ladewig E., Märländer B. 2012. Impact of herbicide application intensity in relation to environment and tillage on earthworm population in sugar beet in Germany, European Journal of Agronomy 39, 25–34.
  • 46. Möth S, Khalil S., Rizzoli R., Steiner M., Forneck A., Bacher S., Griesser M., Querner P., Winter S. 2023. Inter-Row Management and Clay Content Influence Acari and Collembola Abundances in Vineyards. Horticulturae 9, 1249.
  • 47. Ouédraogo F., Cornu J.Y., Fanin N., Janot N., Sourzac M., Parlanti E., Denaix L. 2024. Changes over time in organic matter dynamics and copper solubility in a vineyard soil after incorporation of cover crop residues: Insights from a batch experiment. Chemosphere 350, 141137.
  • 48. Pérès G., Bellido A., Curmi P., Marmonier P., Cluzeau D. 2010. Relationships between earthworm communities and burrow numbers under different land use systems. Pedobiologia 54, 37–44.
  • 49. Poeplau C., Don A. 2015. Carbon sequestration in agricultural soils via cultivation of cover crops – A meta-analysis, Agriculture, Ecosystems & Environment 200, 33–41.
  • 50. Pommeresche R., Loes A.K. 2009. Relations between agronomic practice and earthworms in Norvegian arable soils. Dyn. Soil Dyn. Plant (special issue 2), 129–142 (Global Science Books).
  • 51. Pouyat R.V., Szlavecz K., Yesilonis I.D., Groffman P.M., Schwarz K. 2010. Chemical, physical, and biological characteristics of urban soils. Urban Ecosystem Ecology 55, 119–152.
  • 52. Ragasová L., Kopta T., Winkler J., Pokluda R. 2019. The Current Stage of Greening Vegetation in Selected Wine-Regions of South Moravian Region (Czech Republic). Agronomy 9, 541.
  • 53. Ragasová L., Kopta T., Winkler J., Šefrová H., Pokluda R. 2021. The effect of the proportion of adjacent non-crop vegetation on plant and invertebrate diversity in the vineyards of the South Moravian Region. Agronomy 11, 1073.
  • 54. Römbke J., Jänsch S., Didden W. 2005. The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicology and Environmental Safety 62, 249–265.
  • 55. Sciubba L., Mazzon M., Cavani L., Baldi E., Toselli M., Ciavatta C., Marzadori C. 2021. Soil Response to Agricultural Land Abandonment: A Case Study of a Vineyard in Northern Italy. Agronomy 11, 1841.
  • 56. Schreck E., Gontier L., Dumat C., Geret F. 2012. Ecological and physiological effects of soil management practices on earthworm communities in French vineyards, European Journal of Soil Biology 52, 8–15.
  • 57. Simon B., Boziné Pullai K., Selmeczi D., Sebők A., Tóthné Bogdányi F., Weldmichael T.G., Zalai M., Nsima J.P., Tóth F. 2022. Green Corridors May Sustain Habitats for Earthworms in A Partially Converted Grassland. Agronomy 12, 793.
  • 58. Telak L., Bogunovic I. 2020. Tillage-induced impacts on the soil properties, soil water erosion, and loss of nutrients in the vineyard (Central Croatia). Journal of Central European Agriculture 21, 589–601.
  • 59. Ter Braak C.J.F., Šmilauer P. 2012. Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power, Ithaca USA.
  • 60. Van Leeuwen C., Friant P., Choné X., Tregoat O., Koundouras S., Dubourdieu D. 2004. Influence of climate, soil, and cultivar 442 on terroir. American Journal of Enology and Viticulture 55, 207–217.
  • 61. Vaquero Perea C., Valverde-Asenjo I., Vazquez de la Cueva, A., Martín-Sanz J.P., Molina J.A., Quintana J.R. 2020. Colonizing vegetation type drives evolution of organic matter in secondary succession in abandoned vineyards. Plant Ecology 221, 1143–1158.
  • 62. Vepsäläinen K., Ikonen H., Koivula M.J. 2008. The structure of ant assemblages in an urban area of Helsinki, southern Finland. In: Annales Zoologici Fennici Finnish Zoological and Botanical Publishing Board 45(2), 109–127.
  • 63. Vrsic S. 2011. Soil erosion and earthworm population responses to soil management systems in steep-slope vineyards. Plant, Soil and Environment 57, 258–263.
  • 64. Wardle D.A., Yeates G.W., Watson R.N., Nicholson K.S. 1995. The detritus foodweb and the diversity of soil fauna as indicators of disturbance regimes in agroecosystems. Plant Soil 179, 35–43.
  • 65. Winkler J., Malovcová M., Adamcová D., Ogrodnik P., Pasternak G., Zumr D., Kosmala M., Koda E., Vaverková M.D. 2021. Significance of urban vegetation on lawns regarding the risk of fire. Sustainability, 13, 11027.
  • 66. Winkler J., Mazur Ł., Smékalová M., Podlasek A., Hurajová E., Koda E., Jiroušek M., Jakimiuk A., Vaverková M.D. 2022. Influence of land use on plant community composition in Vysocina Region grasslands, Czech Republic. Environment Protection Engineering 48(4), 21–33.
  • 67. Winkler J., Ježová M., Punčochář R., Hurajová E., Martínez Barroso P., Kopta T., Semerádová D., Vaverková M.D. 2023a. Fire hazard: undesirable ecosystem function of orchard vegetation. Fire 6, 25.
  • 68. Winkler J., Ričica T., Hubačíková V., Koda E., Vaverková M.D., Havel L., Zółtowski M. 2023b. Water protection zones – impacts on weed vegetation of arable Soil. Water 15, 3161.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cf25975-dad5-42f7-b2db-a0b51151dbdc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.