PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Positron emission tomography (PET) in oncology: current applications and future perspectives

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Positron emission tomography (PET), particularly dual-modality imaging systems (PET/CT or PET/MRI), has evolved from being a research tool into a valuable clinical modality, particularly in the field of oncology. Currently, most of the PET/CT examinations are done with FDG when assessing glucose metabolism in tumors. FDG PET or PET/CT has been proven to be a valuable method in staging, restaging, therapy response assessment, early recurrence detection, and in unknown primary focus localization. However, PET/CT has its limitations, leading to both false-positive and false-negative results. Proper design and/or choice of an alternative tracer may overcome those problems as well as give better insight into tumor biology and result in more thorough assessment and effective therapeutic approach in patients with cancer.
Rocznik
Strony
47--52
Opis fizyczny
Bibliogr. 31 poz., zdj.
Twórcy
  • Nuclear Medicine Unit, Endocrinology Department, University Hospital in Krakow, Krakow, Poland
  • Department of Endocrinology, Medical College, Jagiellonian University, Krakow, Poland
  • Department of Endocrinology, Medical College, Jagiellonian University, Krakow, Poland
  • Nuclear Medicine Unit, Endocrinology Department, University Hospital in Krakow, Krakow, Poland
Bibliografia
  • 1. Jones T, Price P. Development and experimental medicine applications of PET in oncology: a historical perspective. Lancet Oncol 2012;13:ell6-25.
  • 2. IdoT, Wan CN, Casella V, Fowler JS, Wolf AP, Reivich M, et al. Labeled 2-deoxy-D-glucose analogues: 18F labeled 2-deoxy-2-fluoro-D-glucose and l4C-2-deoxy-2-ftuoro-D-glucose. J Labeled Comp Radiopharm 1978;14:175-83.
  • 3. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with [18F] 2-fluoro-2deoxy-D-glucose: validation of the method. Ann Neurol 1979;6:371-88.
  • 4. Warburg 0, Posener K, Negelein E. The metabolism of the cancer cells. Biochem Zietschr 1924;152:129-69.
  • 5. Korn LK, Coates A, MillstineJ.The role of glucose and FDG metabolism in interpretation of PET studies. In: Lin EC, Alavi A, editors. PET and PET/CT. A clinical guide, 2nd ed. New York, Stuttgart: Thieme, 2008.
  • 6. Boellaard R, O'Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. EurJ Nucl Med Mol Imaging 2010;37:181-200.
  • 7. Gregoire V, Chiti A. PET in radiotherapy planning: particularly exquisite test or pending and experimental tool? Radiother Oncol 2010;96:275-6.
  • 8. Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumour staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004:22:4357-68.
  • 9. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008;49:480-508.
  • 10. Coenen HH, Elsinga PH, Iwata R, Kilbourn MR, Pillai MR, Rajan MG, et al. Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nucl Med Biol 2010;37: 727-40.
  • 11. Rice SL, Roney CA, Daumar P, Lewis JS. The next generation of positron tomography radiopharmaceuticals in oncology. Semin Nucl Med 2011:41:265-82.
  • 12. Haubner R. PET radiopharmaceuticals in radiation treatment planning - synthesis and biological characteristics. Radiother Oncol 2010:96:280-7.
  • 13. Huang C, McConathy J. Radiolabeled Amino acids for oncologic imaging. J Nucl Med 2O13;54:1OO7-1O.
  • 14. Vander Borght T, Asenbaum S, Bartenstein P, Halldin C, Kapucu 0, Van Laere K, et al. EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging 2006;33:1374-80.
  • 15. Taieb D, Timmers H|, Hindie E, Guillet BA, Neumann HP, Waiz MK, et al. EANM 2012 guidelines for radionuclide imaging of phaeochromocytoma and paraganglioma. EurJ NuclMed Mol Imaging 2012;39:1977-95.
  • 16. Schuster DM, Nieh PT, Jani AB, Amzat R, Bowman FD, Halkar RK, et al. Anti-3-[18F]FACBC PET-CT and lllln-capromab-pendetide SPECT-CT in recurrent prostate carcinoma: results of a prospective clinical trial. ] Urol. 2013 Oct 18. pii: S0022-5347(13)05682-6. doi: 10.1016/j.juro.2013.10.065. [Epub ahead of print].
  • 17. Jadvar H. Molecular imaging of prostate cancer with PET.) Nucl Med 2013;54:1685-8.
  • 18. Umbehr MH, Miintener M, Hany T, Sulser T, Bachmann LM. The role of UC-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 2013;64:106-17.
  • 19. Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med 2013;38:305-14.
  • 20. Bauman G, Belhocine T, Kovacs M, Ward A, Beheshti M, Rachinsky 1.18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 2O12;15:45-55.
  • 21. Treglia G, Giovannini E, Di Franco D, Calcagni ML, Rufini V, Picchio M, et al. The role of positron emission tomography using carbon-11 and fluorine-18 choline in tumours other than prostate cancer: a systematic review. Ann Nucl Med 2012:26:451-61.
  • 22. Li Y, Schiepers C, Lake R, Dadparvar S, Berenji GR. Clinical utility of 18F-fluoride PET/CT in bening and malignant bone diseases. Bone 2012:50:128-39.
  • 23. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006:47:287-97.
  • 24. Ambrosini V, Campana D, Tomassetti P, Grassetto G, Rubello D, Fanti S. PET/CT with 68gallium-DOTA-peptides in NET: an overview. EurJ Radiol 2011;80:ell6-9.
  • 25. Treglia G, Castaldi P, Rindi G, Giordano A, Rufini V. Diagnostic performance of gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroen-docrine tumours: a meta-analysis. Endocrine 2012;42:80-7.
  • 26. Virgolini I, Ambrosini V, Bomanji JB, Baum RP, Fanti S, Gabriel M. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-D0TA-N0C, 68Ga-DOTA-TATE. EurJ Nuct Med Mol Imaging 2010:37:2004-10.
  • 27. Wright BD, Lapi SE. Designing the magic bullet? The advancement of immuno-PET into clinical use. J Nucl Med 2013:54:1171-4.
  • 28. Knowles SM, Wu AM. Advances in immuno-positron emission tomography: antibodies for molecular imaging in oncology. J Clin Oncol 2012;30:3884-92.
  • 29. Tehrani OS, Shields AF. PET imaging of proliferation with pyrimidines. J Nucl Med 2013;54;903-12.
  • 30. Chalkidou A, Landau DB, Odell EW, Cornelius VR, O'Doherty MJ, Marsden PK. Correlation between Ki-67 immunohisto-chemistry and 18F-fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. EurJ Cancer 2012;48:3499-513.
  • 31. Carlin S, Humm JL. PET of hypoxia: current and future perspectives. J Nucl Med 2012;53:1171-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cee501b-1ddf-493d-a704-ba43c7001f2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.