Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduce and analyze a lower envelope method (LEM) for the tracking of motion of interfaces in multiphase problems. The main idea of the method is to define the phases as the regions where the lower envelope of a set of functions coincides with exactly one of the functions. We show that a variety of complex lower-dimensional interfaces naturally appear in the process. The evolution of phases is then achieved by solving a set of transport equations. In the first part of the paper, we show several theoretical properties, give conditions to obtain a well-posed behaviour, and show that the level set method is a particular case of the LEM. In the second part, we propose a LEM-based numerical algorithm for multiphase shape optimization problems. We apply this algorithm to an inverse conductivity problem with three phases and present several numerical results.
Czasopismo
Rocznik
Tom
Strony
189--229
Opis fizyczny
Bibliogr. 61 poz., rys.
Twórcy
autor
- Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany
Bibliografia
- Albuquerque, Y. F., Laurain, A. and Sturm, K. (2020) A shape optimization approach for electrical impedance tomography with point measurements. Inverse Problems, 36(9): 095006, 27.
- Alessandrini, G., de Hoop, M. V., Gaburro, R. and Sincich, E. (2018) EIT in a layered anisotropic medium. Inverse Probl. Imaging, 12(3): 667–676.
- Allaire, G., Dapogny, C., Delgado, G. and Michailidis, G. (2014) Multi-phase structural optimization via a level set method. ESAIM Control Optim. Calc. Var., 20(2): 576–611.
- Allaire, G., Dapogny, C., and Jouve, F. C. (2021) Shape and topology optimization. In: Geometric Partial Differential Equations. Part II. Handb. Numer. Anal., 1–132. Elsevier/North-Holland, Amsterdam.
- Azegami, H. (2020) Shape Optimization Problems. Springer Optimization and Its Applications 164. Springer, Singapore.
- Barrett, J. W., Garcke, H., and Nürnberg, R. (2008) On sharp interface limits of Allen-Cahn/Cahn-Hilliard variational inequalities. Discrete Contin. Dyn. Syst. Ser. S, 1(1): 1–14.
- Bera, T. K. (2018) Applications of electrical impedance tomography (EIT): A short review. IOP Conference Series: Materials Science and Engineering, 331: 012004.
- Beretta, E., Francini, E. and Vessella, S. (2017) Differentiability of the Dirichlet to Neumann map under movements of polygonal inclusions with an application to shape optimization. SIAM J. Math. Anal., 49(2): 756–776.
- Beretta, E., Micheletti, S., Perotto, S. and Santacesaria, M. (2018) Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT. J. Comput. Phys., 353: 264–280.
- Birgin, E. G., Laurain, A. and Menezes, T. C. (2023) Sensitivity analysis and tailored design of minimization diagrams. Mathematics of Computation, 92(344): 2715–2768.
- Borcea, L. (2002) Electrical impedance tomography. Inverse Problems, 18(6): R99–R136.
- Bronsard, L., Garcke, H. and Stoth, B. (1998) A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem. Proc. Roy. Soc. Edinburgh Sect. A, 128(3): 481–506.
- Bronsard, L. and Wetton, B. T. R. (1995) A numerical method for tracking curve networks moving with curvature motion. J. Comput. Phys., 120(1): 66–87.
- Burger, M. (2003) A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces Free Bound., 5(3): 301–329.
- Chen, S., Gonella, S., Chen, W. and Liu, W. K. (2010) A level set approach for optimal design of smart energy harvesters. Comput. Methods Appl. Mech. Engrg., 199(37-40): 2532–2543.
- de Gournay, F. (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim., 45(1): 343–367.
- Delfour, M., Payre, G. and Zolésio, J.-P. (1985) An optimal triangulation for second-order elliptic problems. Comput. Methods Appl. Mech. Engrg., 50(3): 231–261.
- Delfour, M. C. and Zolésio, J.-P. (2011) Shapes and Geometries. Advances in Design and Control 22. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition.
- Dumont, S., Goubet, O., Ha-Duong, T. and Villon, P. (2006) Meshfree methods and boundary conditions. Internat. J. Numer. Methods Engrg., 67(7): 989–1011.
- Dupire, G., Boufflet, J. P., Dambrine, M. and Villon, P. (2010) On the necessity of Nitsche term. Appl. Numer. Math., 60(9): 888–902.
- Edelsbrunner, H. and Seidel, R. (1986) Voronoi diagrams and arrangements. Discrete & Computational Geometry, 1(1): 25–44.
- Garcke, H., Nestler, B. and Stoth, B. (2000) A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math., 60(1): 295–315.
- Gibou, F., Fedkiw, R. and Osher, S. (2018) A review of level-set methods and some recent applications. Journal of Computational Physics, 353: 82–109.
- Hintermüller, M. and Laurain, A. (2008) Electrical impedance tomography: from topology to shape. Control Cybernet., 37(4): 913–933.
- Hintermüller, M. and Laurain, A. (2009) Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imaging Vision, 35(1): 1–22.
- Hintermüller, M., Laurain, A. and Novotny, A. A. (2012) Second-order topological expansion for electrical impedance tomography. Adv. Comput. Math., 36(2): 235–265.
- Hiptmair, R., Paganini, A. and Sargheini, S. (2014) Comparison of approximate shape gradients. BIT Numerical Mathematics, 55(2): 459–485.
- Lamboley, J. and Pierre, M. (2007) Structure of shape derivatives around irregular domains and applications. J. Convex Anal., 14(4): 807–822.
- Laurain, A. (2017) Stability analysis of the reconstruction step of the Voronoi implicit interface method. SIAM Journal on Numerical Analysis, 55(1): 1–30.
- Laurain, A. (2018) A level set-based structural optimization code using FEniCS. Structural and Multidisciplinary Optimization, 58(3): 1311–1334.
- Laurain, A. (2020) Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains. Journal de Mathématiques Pures et Appliquées, 134, 328–368.
- Laurain, A. and Sturm, K. (2016) Distributed shape derivative via averaged adjoint method and applications. ESAIM Math. Model. Numer. Anal., 50(4): 1241–1267.
- Li, H. and Tai, X.-C. (2007) Piecewise constant level set method for multiphase motion. Int. J. Numer. Anal. Model., 4(2): 291–305.
- Liu, D., Khambampati, A. K., Kim, S. and Kim, K. Y. (2015) Multiphase flow monitoring with electrical impedance tomography using level set based method. Nuclear Engineering and Design, 289: 108–116.
- Liu, D., Zhao, Y., Khambampati, A. K., Seppänen, A. and Du, J. (2018) A parametric level set method for imaging multiphase conductivity using electrical impedance tomography. IEEE Transactions on Computational Imaging, 4(4): 552–561.
- Logg, A., Mardal, K.-A. and Wells, G. N., eds. (2012) Automated Solution of Differential Equations by the Finite Element Method. Lecture Notes in Computational Science and Engineering, 84, Springer.
- Mei, Y. and Wang, X. (2004) A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mech. Sin. Engl. Ser., 20(5): 507–518.
- Merriman, B., Bence, J. K. and Osher, S. J. (1994) Motion of multiple functions: a level set approach. J. Comput. Phys., 112(2): 334–363.
- Noh, W. and Woodward, P. (1976) Slic (simple line interface calculation). In: A. van de Vooren and P. Zandbergen, eds., Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28–July 2, 1976 Twente University, Enschede, Lecture Notes in Physics, 59, 330–340. Springer, Berlin Heidelberg.
- Osher, S. and Fedkiw, R. (2003) Level set methods and dynamic implicit surfaces, Applied Mathematical Sciences, 153 Springer-Verlag, New York.
- Osher, S. and Sethian, J. A. (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1): 12–49.
- Qi, L. (2017) Transposes, L-eigenvalues and invariants of third order tensors. arXiv preprint 1704.01327.
- Saye R. I. and Sethian, J. A. (2011) The Voronoi implicit interface method for computing multiphase physics. Proc. Natl. Acad. Sci. USA, 108(49): 19498–19503.
- Saye, R. I. and Sethian, J. A. (2013) Multiscale modeling of membrane rearrangement, drainage, and rupture in evolving foams. Science, 340(6133): 720–724.
- Sethian, J. A. (1999) Level Set Methods and Fast Marching Methods. Cambridge Monographs on Applied and Computational Mathematics, 3. Cambridge University Press, Cambridge, second edition.
- Smith, K. A., Solis, F. J. and Chopp, D. L. (2002) A projection method for motion of triple junctions by levels sets. Interfaces Free Bound., 4(3): 263–276.
- Sokolowski, J. and Zolésio, J.-P. (1992) Introduction to Shape Optimization. Springer Series in Computational Mathematics, 16, Springer-Verlag, Berlin.
- Sturm, K. (2015) Minimax Lagrangian approach to the differentiability of nonlinear PDE constrained shape functions without saddle point assumption. SICON, 53(4): 2017–2039.
- Sturm, K. (2016) A structure theorem for shape functions defined on submanifolds. Interfaces Free Bound., 18(4): 523–543.
- Tai, X.-C. and Chan, T. F. (2004) A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Model., 1(1): 25–47.
- Tavakoli, R. and Mohseni, S. M. (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct. Multidiscip. Optim., 49(4): 621–642.
- Tossavainen, O.-P., Vauhkonen, M., Kolehmainen, V. and Youn Kim, K. (2006) Tracking of moving interfaces in sedimentation processes using electrical impedance tomography. Chemical Engineering Science, 61(23): 7717–7729.
- Vese, L. A. and Chan, T. F. (2002) A multiphase level set framework for image segmentation using the mumford and shah model. International Journal of Computer Vision, 50(3): 271–293.
- Vogiatzis, P., Chen, S., Wang, X., Li, T. and Wang, L. (2017) Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. Comput.-Aided Des., 83: 15–32.
- Wang, M. Y. and Wang, X. (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Engrg., 193(6-8): 469–496.
- Wang, Y., Luo, Z., Kang, Z. and Zhang, N. (2015) A multi-material level set-based topology and shape optimization method. Comput. Methods Appl. Mech. Engrg., 283: 1570–1586.
- Weaire, D. and Hutzler, S. (1999) The Physics of Foams. Clarendon Press.
- Zhang, X., Chen, J.-S. and Osher, S. (2008) A multiple level set method for modeling grain boundary evolution of polycrystalline materials. Interaction and Multiscale Mechanics, 1(2): 191–209.
- Zhao, H.-K., Chan, T., Merriman, B. and Osher, S. (1996) A variational level set approach to multiphase motion. J. Comput. Phys., 127(1): 179–195.
- Zolésio, J.-P. (1979) Identification de domaines par déformations. Thése de doctorat d’état, Université de Nice, France.
- Zuo, W. and Saitou, K. (2017) Multi-material topology optimization using ordered SIMP interpolation. Struct. Multidiscip. Optim., 55(2): 477–491.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ce7da5a-66a0-4a9c-99cd-2ad6e2f94946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.