PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

System efficiency for AC vs. DC distribution paradigms: a comparative evaluation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The birth of electricity witnessed “the battle of currents” between AC and DC as a medium of power transfer. AC won the battle in the first place because of its ability to transform voltage levels. However, with the development of power electronic converters (PECs), DC is striking back. Most of the electronic loads in our conventional AC-based homes are DC by nature. Moreover, the modern concept of energy-efficient variable speed drive (VSD) based loads, i.e. DC-inverter based air-conditioners and refrigerators, require a DC link for their operation. The driving component of all such loads is the PEC. The operational efficiency of PECs depends on the loading which varies throughout the day. This paper presents a mathematical model based on a bottom-up approach to the comparative efficiency analysis of AC and DC distribution systems considering daily load variation. Two topologies are presented where AC and DC distribution systems are compared in terms of efficiency. The first topology (T1) defines a separate/independent converter for each load, whereas in the second topology (T2) loads of a particular class are lumped and driven by a single converter. The results present DC distribution better than AC distribution with an efficiency advantage of 2.28% and 1.57% for T1 and T2, respectively.
Rocznik
Strony
art. no. e139956
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Electrical Engineering Department, University of Engineering and Technology Lahore, Pakistan
autor
  • Electrical Engineering Department, COMSATS Lahore, Pakistan
  • Electrical Engineering Department, University of Engineering and Technology Lahore, Pakistan
autor
  • Electrical Engineering Department, University of Engineering and Technology Lahore, Pakistan
  • School of Information Science and Engineering, Fudan University, Shanghai, China
  • Electrical Engineering Department, University of Engineering and Technology Lahore, Pakistan
  • Electrical Engineering Department, COMSATS Lahore, Pakistan
  • Energy Technology Department, Aalborg University, Denmark
Bibliografia
  • [1] E. Rodriguez-Diaz, J.C. Vasquez and J.M. Guerrero, “Intelligent DC homes in future sustainable energy system: When efficiency and intelligence work together”, IEEE Consum. Electron. Mag., vol. 5, no. 1, pp. 74–80, 2016.
  • [2] A. Allerhand, “A Contrarian History of Early Electric Power Distribution [History]”, IEEE Ind. Appl. Mag., vol. 27, no. 1, pp. 9–19, Jan.–Feb. 2021, doi: 10.1109/MIAS.2020.3028630.
  • [3] C.L. Sulzberger, “Triumph of ac-from Pearl Street to Niagara”, IEEE Power Energy Mag., vol. 99, no. 3, pp. 64–67, 2003, doi: 10.1109/MPAE.2003.1197918.
  • [4] C.L. Sulzberger, “Triumph of AC. 2. The battle of the currents”, IEEE Power Energy Mag., vol. 1, no. 4, pp. 70–73, 2003, doi: 10.1109/MPAE.2003.1213534.
  • [5] M. Nasir, S. Iqbal, H.A. Khan, J.C. Vasquez, and J.M. Guerrero, “Sustainable Rural Electrification Through Solar PV DC Microgrids – An Architecture-Based Assessment”, Processes, vol. 8, no. 11, p. 1417, Nov. 2020, doi: 10.3390/pr8111417.
  • [6] M. Muniappan, “A comprehensive review of DC fault protection methods in HVDC transmission systems”, Prot. Control Mod. Power Syst., vol. 6, no. 1, pp. 1–20, 2021, doi: 10.1186/s41601-020-00173-9.
  • [7] C. Crozier, T. Morstyn, and M. McCulloch, “The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems”, Appl. Energy, vol. 268, p. 114973, Jun. 2020, doi: 10.1016/j.apenergy.2020.114973.
  • [8] F. Dastgeer, H.E. Gelani, H.M. Anees, Z.J. Paracha, and A. Kalam, “Analyses of efficiency/energy-savings of DC power distribution systems/microgrids: Past, present and future”, Int. J. Electr. Power Energy Syst., vol. 104, pp. 89–100, Jan. 2019, doi: 10.1016/j.ijepes.2018.06.057.
  • [9] A.S. Ayobe and S. Gupta, “Comparative investigation on HVDC and HVAC for bulk power delivery”, in Mater. Today: Proc., vol. 177, pp. 1116–1132, 2021, doi: 10.1016/j.matpr.2021.06.025.
  • [10] J. Dakic, M. Cheah-Mane, O. Gomis-Bellmunt and E.P. Araujo, “HVAC Transmission System for Offshore Wind Power Plants Including Mid-cable Reactive Power Compensation: Optimal design and comparison to VSC-HVDC transmission”, IEEE Trans. Power Deliv., vol. 36, no. 5, pp. 2814–2824, Sept. 2020, doi: 10.1109/TPWRD.2020.3027356.
  • [11] A.D. Almeida, J. Fong, C.U. Brunner, R. Werle and M. Van Werkhoven, “New technology trends and policy needs in energy efficient motor systems – A major opportunity for energy and carbon savings”, Renew. Sustain. Energy Rev., vol. 115, p. 109384, Nov. 2019, doi: 10.1016/j.rser.2019.109384.
  • [12] K. Siraj and H.A. Khan, “DC distribution for residential power networks – a framework to analyze the impact of voltage levels on energy efficiency”, Energy Rep., vol. 6, pp. 944–951, Nov. 2020, doi: 10.1016/j.egyr.2020.04.018.
  • [13] L.Z. Liu and M. Li, “Research on energy efficiency of DC distribution system”, in AASRI Procedia, vol. 7, pp. 68–74, 2014, doi: 10.1016/j.aasri.2014.05.031.
  • [14] H.R. Atia, A. Shakya, P. Tandukar, U. Tamrakar, T.M. Hansen, and R. Tonkoski, “Efficiency analysis of AC coupled and DC coupled microgrids considering load profile variations”, in IEEE International Conference on Electro Information Technology (EIT), 2016, pp. 0695–0699, doi: 10.1109/EIT.2016.7535324.
  • [15] U. Manandhar, A. Ukil, and T.K. Jonathan, “Efficiency comparison of DC and AC microgrid”, in IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), 2015, pp. 1–6, doi: 10.1109/ISGT-Asia.2015.7387051.
  • [16] R. Sirsi and Y. Ambekar, “Efficiency of DC microgrid on DC distribution system”, in IEEE Innovative Smart Grid Technologies- Asia (ISGT ASIA), 2015, pp. 1–6, doi: 10.1109/ISGT-Asia.2015.7387055.
  • [17] R. Sirsi, S. Prasad, A. Sonawane, and A. Lokhande, “Efficiency comparison of AC distribution system and DC distribution system in microgrid”, in International conference on energy efficient technologies for sustainability (ICEETS), 2016, pp. 325–329, doi: 10.1109/ICEETS.2016.7583774.
  • [18] R. Weiss, L. Ott, and U. Boeke, “Energy efficient low-voltage DC-grids for commercial buildings”, in IEEE First International Conference on DC Microgrids (ICDCM), 2015, pp. 154–158, doi: 10.1109/ICDCM.2015.7152030.
  • [19] V. Vossos, K. Garbesi, and H. Shen, “Energy savings from direct-DC in US residential buildings”, Energy Build., vol. 68, pp. 223–231, 2014, doi: 10.1016/j.enbuild.2013.09.009.
  • [20] J. Brenguier, M. Vallet, and F. Vaillant, “Efficiency gap between AC and DC electrical power distribution system”, in IEEE/IAS 52nd Industrial and Commercial Power Systems Technical Conference (I&CPS), 2016, pp. 1–6, doi: 10.1109/ICPS.2016.7490224.
  • [21] D. Fregosi et al., “A comparative study of DC and AC microgrids in commercial buildings across different climates and operating profiles”, in IEEE First International Conference on DC Microgrids (ICDCM), 2015, pp. 159–164, doi: 10.1109/ICDCM.2015.7152031.
  • [22] U. Boeke and M. Wendt, “DC power grids for buildings”, in IEEE First International Conference on DC Microgrids (ICDCM), 2015, pp. 210–214, doi: 10.1109/ICDCM.2015.7152040.
  • [23] H.E. Gelani and F. Dastgeer, “Efficiency analyses of a DC residential power distribution system for the modern home”, Adv. Electr. Comput. Eng., vol. 15, no. 1, pp. 135–143, 2015, doi: 10.4316/AECE.2015.01018.
  • [24] H.E. Gelani, M. Nasir, F. Dastgeer, and H. Hussain, “Efficiency comparison of alternating current (AC) and direct current (DC) distribution system at residential level with load characterization and daily load variation”, Proc. Pak Acad Sci.: A. Phys. Comput. Sci., vol. 54, no. 2, pp. 111–118, 2017.
  • [25] F. Dastgeer and H.E. Gelani, “A Comparative analysis of system efficiency for AC and DC residential power distribution paradigms”, Energy Build., vol. 138, pp. 648–654, 2017, doi: 10.1016/j.enbuild.2016.12.077.
  • [26] A. Rasheed, S. Khan, H.E. Gelani, and F. Dastgeer, “AC vs. DC Home: An Efficiency Comparison”, in International Symposium on Recent Advances in Electrical Engineering (RAEE), 2019, pp. 1–6, doi: 10.1109/RAEE.2019.8887064.
  • [27] H.E. Gelani, F. Dastgeer, K. Siraj, M. Nasir, K.A.K. Niazi, and Y. Yang, “Efficiency Comparison of AC and DC Distribution Networks for Modern Residential Localities”, Appl. Sci., vol. 9, no. 3, 2019, doi: 10.3390/app9030582.
  • [28] F. Ahmad, F. Dastgeer, H.E. Gelani, S. Khan, and M. Nasir, “Comparative analyses of residential building efficiency for AC and DC distribution networks”, Bull. Polish Acad. Sci. Tech. Sci, vol. 69, no. 2, p. e136732, 2021, doi: 10.24425/bpasts.2021.136732.
  • [29] U.S. Energy Information Administration (EIA), “Residential Energy Consumption Survey”, [Online]. Available: https://www.eia.gov/consumption/residential/data/2015/.
  • [30] H.M. Anees, S.A.A. Kazmi, M. Naqvi, S.R. Naqvi, F. Dastgeer, and H.E. Gelani, “A mathematical model-based approach for DC multi-microgrid performance evaluations considering intermittent distributed energy resources, energy storage, multiple load classes, and system components variations”, Energy Sci Eng., vol. 9, no. 10, 2021, pp. 1919–1934, doi: 10.1002/ese3.901.
  • [31] S. Czapp and J. Guzinski, “Electric shock hazard in circuits with variable-speed drives”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 3, pp. 361–372, 2018.
  • [32] D. Kaya, F.Ç. Kılıç and H.H. Öztürk, “Energy Saving with Variable Speed Driver Applications”, in Energy Management and Energy Efficiancy in Industry, Springer, Cham, 2021, doi: 10.1007/978-3-030-25995-2_15.
  • [33] M. Mohammadalizadehkorde and R. Weaver, “Quantifying potential savings from sustainable energy projects at a large public university: An energy efficiency assessment for Texas State University”, Sustain. Energy Technol. Assess., vol. 37, p. 100570, Feb. 2020, doi: 10.1016/j.seta.2019.100570.
  • [34] U.S. Energy Administration Residential Data, “Residential Energy Consumption Survey”, [Online]. Available: https://www.eia.gov/consumption/residential/data.
  • [35] B. Anderson, S. Lin, A. Newing, A. Bahaj, and P. James, “Electricity consumption and household characteristics: Implications for census-taking in a smart metered future”, Comput. Environ. Urban Syst., vol. 63, pp. 58–67, 2017, doi: 10.1016/j.compenvurbsys.2016.06.003.
  • [36] H.E. Gelani, F. Dastgeer, M. Nasi, S. Khan, and J.M. Guerrero, “AC vs. DC Distribution Efficiency: Are We on the Right Path?”, Energies, vol. 14, no. 13, p. 4039, 2021, doi: 10.3390/en14134039.
  • [37] L.A. Tuan, Applied Modern Control, IntechOpen Book Series, doi: 10.5772/intechopen.75856.
  • [38] ABB, Embedded power DC–DC Converter, [Online]. Available: www.new.abb.com
  • [39] Texas Instruments, AC–DC power supplies, [Online]. Available: https://e2e.ti.com
  • [40] Sandia National Laboratories Inverters List, [Online]. Available: https://www.gosolarcalifornia.org/equipment/inverters.php.
  • [41] J.J. Grainger and W.D. Stevenson, Power System Analysis, McGraw-Hill, 2003.
  • [42] A.B. Acharya, D. Sera, R. Teodorescu, and L.E. Norum, “Modular Multilevel Converter for Photovoltaic Application with High Energy Yield under Uneven Irradiance”, Energies, vol. 13, no. 10, p. 2619, 2020, doi: 10.3390/en13102619.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ce54c06-ff0a-4d58-a8d7-a1fba8f730bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.