PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of Temperatures of Phase Transformations of Low-Alloyed Reinforcing Steel Within the Heat Treatment Temperature Range

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of DSC analysis of steel B500SP produced in the process of continuous casting, which is intended for the production reinforcement rods with high ductility. Studies were carried out in the temperature range below 1000°C in a protective atmosphere of helium during samples heating program. The main objective of the study was to determine the temperature range of austenite structure formation during heating. As a result of performed experiments: Ac1s, Ac1f – temperatures of the beginning and finish of the eutectoid transformation, Ac2 – Curie temperature of the ferrite magnetic transformation and the temperature Ac3 of transformation of proeutectoid ferrite into austenite were elaborated. Experimental determination of phase transformations temperatures of steel B500SP has great importance for production technology of reinforcement rods, because good mechanical properties of rods are formed by the special thermal treatment in Tempcore process.
Twórcy
autor
  • AGH University of Science and Technology in Krakow, Faculty of Metal Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Polska
Bibliografia
  • [1] R. Dziurka, J. Pacyna, Arch. Metall. Mater. 57, 943-950 (2012).
  • [2] B. Pawłowski, Arch. Metall. Mater. 57, 957-962 (2012).
  • [3] M. Gojić, M. Sućeska, M. Rajić, J. Therm. Anal. Calorim. 75, 947-956 (2004).
  • [4] A. Kalup, B. Smetana, M. Kawuloková, et al., J. Therm. Anal. Calorim. 127, 123-128 (2017).
  • [5] I. Sohn, R. Dippenaar, Metall. Mater. Trans. B 47, 2083-2094 (2016).
  • [6] E. Wielgosz, T. Kargul, J. Therm. Anal. Calorim. 119, 1547-1553 (2015).
  • [7] T. Kargul, E. Wielgosz et al., Arch. Metall. Mater. 60, 121-125 (2015).
  • [8] M. Kawuloková, B. Smetana, S. Zlá, et al., J. Therm. Anal. Calorim. 127, 423-429 (2017).
  • [9] P. Bała, Arch. Metall. Mater. 54, 1223-1230 (2009).
  • [10] B. Pawłowski, Journal of Achievements in Materials and Manufacturing Engineering 49, 331-337 (2011).
  • [11] M. Lisowska, Nowoczesne Budownictwo Inżynieryjne 3, 74 (2008).
  • [12] P. Presoly, R. Pierer, C. Bernhard, Metall. Mater. Trans. A 44, 5377-5388 (2013).
  • [13] E. Wielgosz, T. Kargul, J. Falkus, Comparison of experimental and numerically calculated thermal properties of steels. In: Proceedings paper, METAL 2014: 23rd International Conference on Metallurgy and Materials, Brno, Czech Republic, 2014.
  • [14] A. Grajcar, W. Zalecki, W. Burian, Metals 6 248, 2-14 (2016).
  • [15] T. Kargul, J. Falkus, Steel Res. Int. 81, 953-958 (2010).
  • [16] B. Smetana, S. Zlá, J. Dobrovska, et al., Int. J. Mater. Res. 101, 398-404 (2010).
  • [17] J. Trzaska, L.A. Dobrzański, J. Mater. Process. Tech. 192-193, 504-510 (2007).
  • [18] B. Pawłowski, Journal of Achievements in Materials and Manufacturing Engineering 54, 185-193 (2012).
  • [19] M. Žaludová, B. Smetana, S. Zlá, et al., Influence of experimental conditions on data obtained by thermal analysis methods. In: Proceedings paper, METAL 2013, Brno, Czech Republic, 2013.
  • [20] S. Raju, B.J. Ganesh, A. Banerjee, E. Mohandas, Materials Science and Engineering A 465, 29-37 (2007).
  • [21] B. Smetana, M. Žaludová, M. Tkadlečková, et al., J. Therm. Anal. Calorim. 112, 473-480 (2013).
  • [22] G.P. Krielaart, C.M. Brakman, S. Van Der Zwaag, Journal of Materials Science 31, 1501-1508 (1996).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ce52f76-96a6-418c-8976-0c721a17ffbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.