PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CC-De-YOLO: A Multiscale Object Detection Method for Wafer Surface Defect

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface defect detection on wafers is crucial for quality control in semiconductor manufacturing. However, the complexity of defect spatial features, including mixed defect types, large scale differences, and overlapping, results in low detection accuracy. In this paper, we propose a CC-De-YOLO model, which is based on the YOLOv7 backbone network. Firstly, the coordinate attention is inserted into the main feature extraction network. Coordinate attention decomposes channel attention into two one-dimensional feature coding processes, which are aggregated along both horizontal and vertical spatial directions to enhance the network’s sensitivity to orientation and position. Then, the nearest neighbor interpolation in the upsampling part is replaced by the CAR-EVC module, which predicts the upsampling kernel from the previous feature map and integrates semantic information into the feature map. Two residual structures are used to capture long-range semantic dependencies and improve feature representation capability. Finally, an efficient decoupled detection head is used to separate classification and regression tasks for better defect classification. To evaluate our model’s performance, we established a wafer surface defect dataset containing six typical defect categories. The experimental results show that the CCDe-YOLO model achieves 91.0% mAP@0.5 and 46.2% mAP@0.5:0.95, with precision of 89.5% and recall of 83.2%. Compared with the original YOLOv7 model and other object detection models, CC-De-YOLO performs better. Therefore, our proposed method meets the accuracy requirements for wafer surface defect detection and has broad application prospects. The dataset containing surface defect data on wafers is currently publicly available on GitHub (https://github.com/ztao3243/Wafer-Datas.git).
Rocznik
Strony
261--285
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Zhengzhou University, Cyber Science and Engineering ZhangZhou, China
autor
  • Zhengzhou University, Cyber Science and Engineering ZhangZhou, China
autor
  • Zhengzhou University, Cyber Science and Engineering ZhangZhou, China
autor
  • Zhengzhou University, Cyber Science and Engineering ZhangZhou, China
Bibliografia
  • [1] Chen S. H., Kang C. H., Perng D. B.: Detecting and measuring defects in wafer die using gan and yolov3. Applied Sciences, 10, 23, 2020, 8725.
  • [2] Ding, X. H., Zhang, X. Y., Man, N. N., Han, J. G., Ding, G. G., Sun, J.: RepVGG: Making VGG-style ConvNets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20-25 June 2021.
  • [3] Elfwing S., Uchibe E., Doya K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 107, 2018, 3-11.
  • [4] Ge Z., Liu S., Wang F., et al.: Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021.
  • [5] Han H., Gao C., Zhao Y., et al.: Polycrystalline silicon wafer defect segmentation based on deep convolutional neural networks. Pattern Recognition Letters, 130, 2020, 234-241.
  • [6] He K., Gkioxari G., Dollár P., et al.: Mask r-cnn, Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969.
  • [7] Ho C. M., Tai Y. C.: Micro-electro-mechanical-systems (MEMS) and fluid flows. Annual review of fluid mechanics, 30, 1, 1998, 579-612.
  • [8] Hou Q., Zhou D., Feng J.: Coordinate attention for efficient mobile network design, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, 13713-13722.
  • [9] Hu J., Shen L., Sun G.: Squeeze-and-excitation networks, Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, 7132-7141.
  • [10] Jin C. H., Na H. J., Piao M., et al.: A novel DBSCAN-based defect pattern detection and classification framework for wafer bin map. IEEE Transactions on Semiconductor Manufacturing, 32, 3, 2019, 286-292.
  • [11] Kim Y., Cho D., Lee J. H.: Wafer map classifier using deep learning for detecting outof-distribution failure patterns, 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2020, 1-5.
  • [12] Kong Y., Ni D.: A semi-supervised and incremental modeling framework for wafer map classification. IEEE Transactions on Semiconductor Manufacturing, 33, 2020, 62-71.
  • [13] Li C., Li L., Jiang H., et al.: YOLOv6: A single-stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976, 2022.
  • [14] Liu S., Qi L., Qin H., et al.: Path aggregation network for instance segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, 8759-8768.
  • [15] Liu W., Anguelov D., Erhan D., et al.: Ssd: Single shot multibox detector, Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14.
  • [16] Lou A., Loew M.: Cfpnet: channel-wise feature pyramid for real-time semantic segmentation, 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021, 1894-1898.
  • [17] Miyajima H., Mehregany M.: High-aspect-ratio photolithography for MEMS applications. Journal of microelectromechanical systems, 4, 4, 1995, 220-229.
  • [18] Ren S., He K., Girshick R., et al.: Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 2015, 28.
  • [19] Selvaraju R. R., Cogswell M., Das A., et al.: Grad-cam: Visual explanations from deep networks via gradient-based localization, Proceedings of the IEEE international conference on computer vision. 2017, 618-626.
  • [20] Shinde P. P., Pai P. P., Adiga S. P. Wafer defect localization and classification using deep learning techniques. IEEE Access, 10, 2022, 39969-39974.
  • [21] Shorten C., Khoshgoftaar T. M.: A survey on image data augmentation for deep learning. Journal of big data, 6, 1, 2019, 1-48.
  • [22] Wang C. Y., Bochkovskiy A., Liao H. Y. M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023, 7464-7475.
  • [23] Wang J., Chen K., Xu R., et al.: Carafe: Content-aware reassembly of features, Proceedings of the IEEE/CVF international conference on computer vision. 2019, 3007-3016.
  • [24] Wang J., Xu C., Yang Z., et al.: Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition. IEEE Transactions on Semiconductor Manufacturing, 33, 4, 2020, 587-596.
  • [25] Woo S., Park J., Lee J. Y., et al.: Cbam: Convolutional block attention module, Proceedings of the European conference on computer vision (ECCV). 2018, 3-19.
  • [26] Xie L., Huang R., Gu N., Cao Z.: A novel defect detection and identification method in optical inspection, Neural Computing and Applications, 2013, 1-10.
  • [27] Xifeng L.: Image registration-based wafer surface defect detection (Chinese). Instrumentation and analytical monitoring, 2020, 1-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ce4c87d-287c-4c04-997b-f72612426d4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.