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Abstract. We obtain lower and upper bounds on general multiplicative Zagreb indices for
graphs of given clique number and order. Bounds on the basic multiplicative Zagreb indices
and on the multiplicative sum Zagreb index follow from our results. We also determine graphs
with the smallest and the largest indices.
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1. INTRODUCTION

Molecular descriptors called topological indices are graph invariants that play a signif-
icant role in chemistry, materials science, pharmaceutical sciences and engineering,
since they can be correlated with a large number of physico-chemical properties
of molecules. In theoretical chemistry, topological indices are used for modelling
properties of chemical compounds and biological activities in chemistry, biochemistry
and nanotechnology.

Let V (G) be the vertex set and let E(G) be the edge set of a graph G. The order n
of a graph G is the number of vertices of G. The degree of a vertex v ∈ V (G), denoted
by dG(v), is the number of edges incident with v. For e ∈ E(G) let us denote by G− e
the subgraph of G obtained by deleting the edge e from E(G). For two nonadjacent
vertices v1, v2 ∈ V (G), let us denote by G+ v1v2 the graph obtained by adding the
edge v1v2 to E(G).

The chromatic number of a graph G is the smallest number of colours needed to
colour the vertices of G so that no two adjacent vertices have the same colour. A clique
of a graph G is a complete subgraph of G and the clique number ω(G) of G is the num-
ber of vertices in a maximum clique of G. Let χn,k be the set of connected graphs having
order n and chromatic number k and let Wn,k be the set of connected graphs
having order n and clique number k.

c© Wydawnictwa AGH, Krakow 2019 433



434 Tomáš Vetrík and Selvaraj Balachandran

We denote the complete graph and the path graph of order n by Kn and Pn,
respectively. A k-partite graph is a graph whose vertices can be partitioned into k
disjoint sets so that no two vertices within the same set are adjacent. Let us denote
by Kn1,n2,...,nk

the complete k-partite graph with partite sets of orders n1, n2, . . . , nk.
The Turán graph Tn,k is a complete k-partite graph such that the orders of any two
partite sets differ by at most 1. We denote by Kk ∗Pn−k the graph obtained by joining
one vertex of Kk to a pendant vertex of Pn−k. The graph Kk ? Sn−k is obtained by
joining one vertex of Kk to n− k new vertices.

The first general multiplicative Zagreb index of a graph G is defined as

P a
1 (G) =

∏

v∈V (G)

dG(v)a

the second general multiplicative Zagreb index is

P a
2 (G) =

∏

v∈V (G)

dG(v)adG(v) =
∏

uv∈E(G)

(dG(u)dG(v))a

and the third general multiplicative Zagreb index of G,

P a
3 (G) =

∏

uv∈E(G)

(dG(u) + dG(v))a,

where a 6= 0 is any real number. These indices generalize basic multiplicative Zagreb
indices. For a = 1, P 1

1 (G) is the Narumi-Katayama index and for a = 2, P 2
1 (G) is

the first multiplicative Zagreb index
∏

1
(G) =

∏

v∈V (G)

dG(v)2.

For a = 1, P 1
2 (G) is the second multiplicative Zagreb index

∏
2
(G) =

∏

v∈V (G)

dG(v)dG(v).

For a = 1, P 1
3 (G) is the multiplicative sum Zagreb index

∏∗

1
(G) =

∏

uv∈E(G)

(dG(u) + dG(v)).

Multiplicative Zagreb indices for graphs of prescribed order and size were studied
in [5], graphs of given order and chromatic number in [10]. bipartite graphs in [8].
molecular graphs in [4], graph operations in [6], some derived graphs in [1] and trees
in [7]. Note that the Harary index of graphs with given matching number and clique
number was investigated in [9].
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The indices
∏

1(G) (= PM1(G)) and
∏

2(G) (= PM2(G)) for graphs of given
clique number were considered in [3]. That paper contains mistakes. We mention only
mistakes in main statements. The value of the second multiplicative Zagreb index for
the Turán graph presented in their Lemma 5 and Corollary 7 is incorrect (r − k must
be replaced by k − r). The lower bound on the first multiplicative Zagreb index is
incorrect. It should be PM1(G) ≥ PM1(Kk ? Sn−k). The value of PM2(Kk(n− k)1)
presented in the last lines of the third section is incorrect if n = k + 1. Correct values
are presented in our conclusion.

We study bounds on general multiplicative Zagreb indices for graphs of given
order and clique number (chromatic number) and results on multiplicative Zagreb
indices (including the multiplicative sum Zagreb index which has not been considered
in combination with clique number before) are corollaries of our main results.

2. RESULTS

We study connected graphs of order n and clique number k (chromatic number k),
thus we can assume that k ≥ 2 since every connected graph having at least 2 vertices
has clique number and chromatic number at least 2. We can also assume that n > k
since the only graph in Wn,k and χn,k for n = k is a complete graph.

Lemma 2.1. Let n = n1 + n2 + . . .+ nk. Then for any a 6= 0 we have

P a
1 (Kn1,n2,...,nk

) =
k∏

i=1
(n− ni)ani ,

P a
2 (Kn1,n2,...,nk

) =
k∏

i=1
(n− ni)ani(n−ni),

P a
3 (Kn1,n2,...,nk

) =
∏

1≤i<j≤k

(2n− ni − nj)aninj .

Proof. The vertices of Kn1,n2,...,nk
can be divided into k sets N1, N2, . . . , Nk, where

|Ni| = ni for i = 1, 2, . . . , k, such that no two vertices in the same set are adjacent
and any two vertices from different sets are adjacent. Every vertex in Ni has degree
n− ni, thus

P a
1 (Kn1,n2,...,nk

) = (n− n1)an1(n− n2)an2 . . . (n− nk)ank =
k∏

i=1
(n− ni)ani

and

P a
2 (Kn1,n2,...,nk

) = (n− n1)an1(n−n1)(n− n2)an2(n−n2) . . . (n− nk)ank(n−nk)

=
k∏

i=1
(n− ni)ani(n−ni).
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Since for 1 ≤ i < j ≤ k there are ninj edges connecting vertices in Ni (of degree
n− ni) and vertices in Nj of (degree n− nj), we obtain

P a
3 (Kn1,n2,...,nk

) = (2n− n1 − n2)an1n2(2n− n1 − n3)an1n3

. . . (2n− nk−1 − nk)ank−1nk

=
∏

1≤i<j≤k

(2n− ni − nj)aninj .

We show that by adding an edge to a graph G, we obtain a graph having larger
general multiplicative Zagreb indices.

Lemma 2.2. For a connected graph G with two nonadjacent vertices v1, v2 ∈ V (G),
we have P a

c (G) < P a
c (G+ v1v2) where c = 1, 2, 3 and a > 0.

Proof. Let G′ = G+ v1v2. For j = 1, 2, we have

1 ≤ dG(vj) < dG′(vj),

which means that
1 ≤ dG(vj)a < dG′(vj)a.

Thus, P a
1 (G) < P a

1 (G′). Similarly,

1 ≤ dG(vj)adG(vj) < dG′(vj)adG′ (vj),

so P a
2 (G) < P a

2 (G′).
Since

2 ≤ dG(v1) + dG(v2) < dG′(v1) + dG′(v2),

we obtain

1 < (dG(v1) + dG(v2))a < (dG′(v1) + dG′(v2))a and P a
3 (G) < P a

3 (G′).

Similarly, the following lemma can be proved.

Lemma 2.3. For a graph G with e ∈ E(G), we have P a
c (G − e) < P a

c (G) where
c = 1, 2, 3 and a > 0.

Let us study graphs of order n and chromatic number k.

Lemma 2.4. Let G ∈ χn,k be a graph with the largest P a
c index for c = 1, 2, 3 and

a > 0. Then G is a complete k-partite graph.

Proof. Since the chromatic number of G is k, its vertices can be divided into k colour
sets. Note that there is no edge between vertices in the same set, so G is a k-partite
graph with partite sets of orders n1, n2, . . . , nk. Since G has the largest P a

c index,
by Lemma 2.2, G is Kn1,n2,...,nk

.
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Theorem 2.5 gives an upper bound on general multiplicative Zagreb indices for
graphs of order n and chromatic number k.
Theorem 2.5. Let G ∈ χn,k. Then P a

c (G) ≤ P a
c (Tn,k) for c = 1, 2, 3 and a > 0,

with equality if and only if G is Tn,k.
Proof. By Lemma 2.4, we know that a graph G′ with the largest P a

c index for c = 1, 2, 3,
is a complete k-partite graph Kn1,n2,...,nk

. We prove by contradiction that G′ is Tn,k

(and no other graph). Assume to the contrary that G′ is Kn1,n2,...,nk
, where ni > nj +1

for some i, j ∈ {1, 2, . . . , k}. Without loss of generality we can assume that n1 ≥ n2 + 2
(which means that n1−n2 ≥ 2). LetH be the graphKn1−1,n2+1,n3,...,nk

. We distinguish
three cases.
Case 1. c = 1. By Lemma 2.1,

P a
1 (G′) = (n− n1)an1(n− n2)an2

k∏

i=3
(n− ni)ani

= [(n− n1)(n− n2)]an2(n− n1)a(n1−n2)
k∏

i=3
(n− ni)ani

and

P a
1 (H) = (n− (n1 − 1))a(n1−1)(n− (n2 + 1))a(n2+1)

k∏

i=3
(n− ni)ani

= [(n− n1 + 1)(n− n2 − 1)]an2

· (n− n1 + 1)a(n1−n2−1)(n− n2 − 1)a
k∏

i=3
(n− ni)ani .

Since

(n− n1 + 1)(n− n2 − 1) = (n− n1)(n− n2) + n1 − n2 − 1 > (n− n1)(n− n2),

we have
[(n− n1 + 1)(n− n2 − 1)]an2 > [(n− n1)(n− n2)]an2 .

We also know that (n− n1 + 1)a(n1−n2−1) > (n− n1)a(n1−n2−1) and (n− n2 − 1)a >
(n− n1)a, thus P a

1 (H) > P a
1 (G′), a contradiction.

Case 2. c = 2. By Lemma 2.1,

P a
2 (G′) = (n− n1)an1(n−n1)(n− n2)an2(n−n2)

k∏

i=3
(n− ni)ani(n−ni)

and

P a
2 (H) = (n−n1 + 1)a(n1−1)(n−n1+1)(n−n2− 1)a(n2+1)(n−n2−1)

k∏

i=3
(n−ni)ani(n−ni).
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Then

P a
2 (H)

P a
2 (G′) = (n− n1 + 1)an1(n−n1)(n− n1 + 1)a(2n1−n−1)

(n− n1)an1(n−n1)

(n− n2 − 1)an2(n−n2)(n− n2 − 1)a(n−2n2−1)

(n− n2)an2(n−n2)

≥
[

(n− n1 + 1)(n− n2 − 1)
(n− n1)(n− n2)

]an2(n−n2) (n− n2 − 1)a(n−2n2−1)

(n− n1 + 1)a(n−2n1+1) ,

since n−n1+1
n−n1

> 1 and n1(n− n1) ≥ n2(n− n2) (note that the equality holds if only if
n = n1 + n2). Since (n− n1 + 1)(n− n2 − 1) > (n− n1)(n− n2), we have

[
(n− n1 + 1)(n− n2 − 1)

(n− n1)(n− n2)

]an2(n−n2)
> 1.

Therefore

P a
2 (H)

P a
2 (G′) >

(n− n2 − 1)a(n−2n2−1)

(n− n1 + 1)a(n−2n1+1) > 1,

since n−n2− 1 ≥ n−n1 + 1 and n− 2n2− 1 > n− 2n1 + 1. Hence, P a
2 (H) > P a

2 (G′),
a contradiction.

Case 3. c = 3. We have

P a
3 (H)

P a
3 (G′) =

(2n− n1 − n2)a(n1−1)(n2+1)∏
1≤p≤k,p 6=1,2(2n− np − n1 + 1)anp(n1−1)

(2n− n1 − n2)an1n2
∏

1≤p≤k,p 6=1,2(2n− np − n1)anpn1

∏
1≤p≤k,p 6=1,2(2n− np − n2 − 1)anp(n2+1)
∏

1≤p≤k,p 6=1,2(2n− np − n2)anpn2

= (2n− n1 − n2)a(n1n2+n1−n2−1)

(2n− n1 − n2)an1n2

∏

1≤p≤k,p 6=1,2

(2n− np − n1 + 1)anp(n1−1)

(2n− np − n1)anpn1

∏

1≤p≤k,p 6=1,2

(2n− np − n2 − 1)anp(n2+1)

(2n− np − n2)anpn2
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>
∏

1≤p≤k,p 6=1,2

(2n− np − n1 + 1)anp(n1−1)

(2n− np − n1)anpn1

∏

1≤p≤k,p 6=1,2

(2n− np − n2 − 1)anp(n2+1)

(2n− np − n2)anpn2

=
∏

1≤p≤k,p 6=1,2

(
1 + 1

2n− np − n1

)anpn1

(2n− np − n1 + 1)−anp

∏

1≤p≤k,p 6=1,2

(
1− 1

2n− np − n2

)anpn2

(2n− np − n2 − 1)anp

>
∏

1≤p≤k,p 6=1,2

(
1 + 1

2n− np − n1

)anpn2 (
1− 1

2n− np − n2

)anpn2

∏

1≤p≤k,p 6=1,2

(
2n− np − n2 − 1
2n− np − n1 + 1

)anp

≥
∏

1≤p≤k,p 6=1,2

[(
1 + 1

2n− np − n1

)(
1− 1

2n− np − n2

)]an2np

> 1,

since n1 ≥ n2 + 2 and (1 + 1
2n−np−n1

)(1− 1
2n−np−n2

) > 1. Hence, P a
3 (H) > P a

3 (G′),
a contradiction.

In the proof of Theorem 2.7 we use the following result of Erdős [2].

Lemma 2.6. Let G be a graph having clique number at most k. Then there exists
a k-partite graph G′′ such that V (G′′) = V (G) and dG(v) ≤ dG′′(v) for every vertex
v ∈ V (G).

Now we obtain an upper bound on general multiplicative Zagreb indices for graphs
of order n and clique number k.

Theorem 2.7. Let G ∈Wn,k. Then P a
c (G) ≤ P a

c (Tn,k) for c = 1, 2, 3 and a > 0, with
equality if and only if G is Tn,k.

Proof. Let G be any graph inWn,k. By Lemma 2.6, there is a k-partite graph G′′ where
V (G′′) = V (G) and dG(v) ≤ dG′′(v) for every vertex v ∈ V (G). Thus da

G(v) ≤ da
G′′(v),

(dG(v))adG(v) ≤ (dG′′(v))adG′′ (v) and (dG(u) + dG(v))a < (dG′′(u) + dG′′(v))a, where
u, v ∈ V (G). This implies that P a

c (G) ≤ P a
c (G′′) for c = 1, 2, 3. By Lemma 2.2,

P a
c (G′′) ≤ P a

c (G′), where G′ is a complete k-partite graph. Since every complete
k-partite graph having order n is in Wn,k and also in χn,k, by Theorem 2.5, we obtain
P a

c (G) ≤ P a
c (Tn,k) with equality if and only if G is Tn,k.

Let us present a lower bound on the first general multiplicative Zagreb index for
graphs having order n and clique number k.

Theorem 2.8. Let G ∈Wn,k. Then for a > 0 we have P a
1 (G) ≥ P a

1 (Kk ? Sn−k) with
equality if and only if G is Kk ? Sn−k.
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Proof. Let G′ be a graph in Wn,k having the smallest P a
1 index. Since G′ ∈ Wn,k,

we know that G′ contains a complete graph Kk as a subgraph. Let us denote the
vertices of this complete graph by v1, v2, . . . , vk. By Lemma 2.3, G′ is a graph obtained
from Kk by attaching trees to some vertices of Kk.
Claim 1. If G′ contains a tree T attached to vi (1 ≤ i ≤ k), then T is a star.
Assume that T is not a star attached to vi by its centre. Then T contains a vertex u (u 6=
vi) with degree at least 2 adjacent to some pendent vertices. Let u′ be a vertex of T with
degree at least 2 which is furthest from vi. Let u1, u2, . . . , up (where p ≥ 1) be pendent
vertices adjacent to u′. Let G′′ = G′ − {u′u1, u

′u2, . . . , u
′up}+ {viu1, viu2, . . . , viup}.

Then dG′(u′) = p+ 1, dG′′(u′) = 1, dG′(vi) = k1 and dG′′(vi) = k1 + p where k1 ≥ k.
Consequently,

P a
1 (G′)− P a

1 (G′′) = ka
1 (p+ 1)a − (k1 + p)a.

Clearly k1(p+1) = k1p+k1 > k1+p, so [k1(p+1)]a > (k1+p)a and P a
1 (G′)−P a

1 (G′′) > 0.
Since P a

1 (G′) > P a
1 (G′′), we have a contradiction. Hence, T is a star.

Claim 2. Only one vertex vi (1 ≤ i ≤ k) is adjacent to pendent vertices.
Assume that G′ contains (at least) two different vertices vi, vj adjacent to pendent
vertices. Let s be the number of pendent vertices adjacent to vi and let t be the number
of pendent vertices adjacent to vj . We can denote the pendent vertices adjacent to vj

by w1, w2, . . . , wt. Let G′′ = G′ −{vjw1, vjw2, . . . , vjwt}+ {viw1, viw2, . . . , viwt}. Let
k1 = k−1. Then dG′(vi) = k1 + s, dG′′(vi) = k1 + s+ t, dG′(vj) = k1 + t, dG′′(vi) = k1.
Thus

P a
1 (G′)− P a

1 (G′′) = (k1 + s)a(k1 + t)a − (k1 + s+ t)aka
1 .

Since (k1 + s)(k1 + t) > (k1 + s+ t)k1, we get [(k1 + s)(k1 + t)]a > [(k1 + s+ t)k1]a and
consequently P a

1 (G′)− P a
1 (G′′) > 0. Thus P a

1 (G′) > P a
1 (G′′), which is a contradiction.

From Claims 1 and 2 it follows that P a
1 (G) ≥ P a

1 (Kk ? Sn−k) with equality if and
only if G is Kk ? Sn−k.

Lower bounds on the second and third general multiplicative Zagreb indices for
graphs of order n and clique number k are given in Theorems 2.9 and 2.10.

Theorem 2.9. Let G ∈Wn,k. Then for a > 0 we have P a
2 (G) ≥ P a

2 (Kk ∗ Pn−k) with
equality if and only if G is Kk ∗ Pn−k.

Proof. Let G′ be a graph in Wn,k having the smallest P a
2 index. Since G′ ∈Wn,k, we

know that G′ contains a complete graph Kk as a subgraph. Let us denote the vertices
of this complete graph by v1, v2, . . . , vk. By Lemma 2.3, G′ is a graph obtained from
Kk by attaching trees to some vertices of Kk.
Claim 1. If G′ contains a tree T attached to vi (1 ≤ i ≤ k), then T is a path.
Assume that T is not a path attached to vi by its end vertex. Then T contains (at
least) 2 pendant vertices, say u,w. Let x be the closest vertex to u having degree at
least 3 in G′ and let x1 be a vertex adjacent to x which belongs to the path connecting
u and x (possibly x1 = u). Let G′′ = G′ − {xx1}+ {wx1}. We have dG′(x) = p ≥ 3,
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dG′′(x) = p − 1, dG′(w) = 1 and dG′′(w) = 2. For any other vertex v, we have
dG′(v) = dG′′(v). Thus,

P a
2 (G′)

P a
2 (G′′) = pap

4a(p− 1)a(p−1) =
[
p

4

(
1 + 1

p− 1

)p−1
]a

> 1,

since p
4 ≥ 3

4 and (1 + 1
p−1 )p−1 ≥ 9

4 . We have P a
2 (G′) > P a

2 (G′′), a contradiction.
Note that dG′(vi) = k − 1 or k, where 1 ≤ i ≤ k. Let

V ′ = {vi : 1 ≤ i ≤ k, dG′(vi) > k − 1}.

Claim 2. |V ′| = 1.
Assume that |V ′| ≥ 2. Let vi, vj ∈ V ′. Let P1 = viu1u2 . . . us and P2 = vjw1w2 . . . wt

(where s, t ≥ 1) be the paths attached to vi and vj , respectively. Let G′′ = G′ −
{vjw1}+ {usw1}. If dG′(vj) = 2, then G′ and G′′ are paths, so we can assume that
dG′(vj) = k ≥ 3. Then dG′′(vj) = k − 1, dG′(us) = 1 and dG′′(us) = 2. For any other
vertex v, we have dG′(v) = dG′′(v). Thus

P a
2 (G′)

P a
2 (G′′) = kak

4a(k − 1)a(k−1) > 1,

as in Claim 1. We have P a
2 (G′) > P a

2 (G′′), a contradiction.
It follows that G′ is Kk ∗ Pn−k and P a

2 (G) ≥ P a
2 (Kk ∗ Pn−k) with equality if and

only if G is Kk ∗ Pn−k.

Theorem 2.10. Let G ∈ Wn,k. Then for a > 0 we have P a
3 (G) ≥ P a

3 (Kk ∗ Pn−k)
with equality if and only if G is Kk ∗ Pn−k.

Proof. Let G′ be a graph in Wn,k having the smallest P a
3 index. Since G′ ∈Wn,k, we

know that G′ contains a complete graph Kk as a subgraph. Let us denote the vertices
of this complete graph by v1, v2, . . . , vk. By Lemma 2.3, G′ is a graph obtained from
Kk by attaching trees to some vertices of Kk.
Claim 1. If G′ contains a tree T attached to vi (1 ≤ i ≤ k), then T is a path.
Assume that T is not a path attached to vi by its end vertex. Let v ∈ T be a vertex of
degree x ≥ 3 furthest from vi (possibly v = vi). Let u and w be two pendant vertices
of T such that v is on the u− vi path and on the w − vi path. Let vu1u2 . . . us−1u be
a path connecting v and u, and let vw1w2 . . . wt−1w be a path connecting v and w.

For s, t ≥ 2, let G′′ = G′−{vw1}+{uw1}. We have dG′(v) = x ≥ 3, dG′′(v) = x− 1,
dG′(u) = 1, dG′′(u) = 2 and for all the other vertices x we have dG′(x) = dG′′(x).
We consider the edges vw1 ∈ E(G′), uw1 ∈ E(G′′) and the edges vu1, us−1u
in G′ and G′′ and obtain

P a
3 (G′)

P a
3 (G′′) ≥

3a(x+ 2)a(x+ 2)a

16a(x+ 1)a
.
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We did not consider some edges of G′ and G′′ adjacent to v, because we know that
the contribution of these edges in P a

3 (G′) is greater than their contribution in P a
3 (G′′)

(since dG′(v) = x and dG′′(v) = x− 1).

3a(x+ 2)a(x+ 2)a

16a(x+ 1)a
=
[

3(x+ 1)(x+ 3) + 3
16(x+ 1)

]a

>

[
3(x+ 3)

16

]a

> 1

for x ≥ 3. Thus, P a
3 (G′) > P a

3 (G′′), a contradiction.
The cases s ≥ 1, t = 1 and t ≥ 1, s = 1 can be solved using the same method, so

without loss of generality we can assume that s ≥ 1, t = 1. Let G′′ = G′−{vw}+{uw}.
We have dG′(v) = x ≥ 3, dG′′(v) = x−1, dG′(u) = 1, dG′′(u) = 2. If s ≥ 2, we consider
the edges vw ∈ E(G′), uw ∈ E(G′′) and vu1, us−1u in G′ and G′′ and we obtain

P a
3 (G′)

P a
3 (G′′) ≥

3a(x+ 1)a(x+ 2)a

12a(x+ 1)a
=
(
x+ 2

4

)a

> 1

for x ≥ 3. If s = 1, we consider the edges vw ∈ E(G′), uw ∈ E(G′′) and vu inG′ andG′′
and get

P a
3 (G′)

P a
3 (G′′) ≥

(x+ 1)a(x+ 1)a

3a(x+ 1)a
=
(
x+ 1

3

)a

> 1

for x ≥ 3. So, again we obtain P a
3 (G′) > P a

3 (G′′), a contradiction.
Note that dG′(vi) = k − 1 or k, where 1 ≤ i ≤ k. Let

V ′ = {vi : 1 ≤ i ≤ k, dG′(vi) > k − 1}.

Claim 2. |V ′| = 1.
Assume that |V ′| ≥ 2. Let vi, vj ∈ V ′. Let P1 = viu1u2 . . . us and P2 = vjw1w2 . . . wt

(where s, t ≥ 1) be the paths attached to vi and vj , respectively. Let G′′ =
G′ − {vjw1}+ {usw1}. If dG′(vj) = 2, then G′ and G′′ are paths, so we can assume
that dG′(vj) = k ≥ 3. Then dG′′(vj) = k − 1, dG′(us) = 1 and dG′′(us) = 2. For any
other vertex v, we have dG′(v) = dG′′(v).

If s, t ≥ 2, we consider the edges vjw1 ∈ E(G′), usw1 ∈ E(G′′) and the edges
usus−1, vivj in G′ and G′′ and obtain

P a
3 (G′)

P a
3 (G′′) ≥

3a(k + 2)a(2k)a

16a(2k − 1)a
=
[

3(2k − 1)(2k + 5)
32(2k − 1) + 15

32(2k − 1)

]a

>

[
3(2k + 5)

32

]a

> 1

for k ≥ 3. (We did not consider some edges of G′ and G′′ adjacent to vj , because we
know that the contribution of these edges in P a

3 (G′) is greater than their contribution
in P a

3 (G′′).) Thus P a
3 (G′) > P a

3 (G′′), a contradiction.
The cases s ≥ 1, t = 1 and t ≥ 1, s = 1 can be solved using the same technique,

thus without loss of generality we can assume that s ≥ 1, t = 1. We consider the edges
vjw1 ∈ E(G′), usw1 ∈ E(G′′) and usus−1, vivj in G′ and G′′ and get
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P a
3 (G′)

P a
3 (G′′) ≥

3a(k + 1)a(2k)a

12a(2k − 1)a
=
[

(k + 1)2k
4(2k − 1)

]a

> 1

since k + 1 ≥ 4 and 2k > 2k − 1 for k ≥ 3.
If s = 1 and t = 1, we consider the edges vjw1 ∈ E(G′), u1w1 ∈ E(G′′) and viu1

in G′ and G′′ and get
P a

3 (G′)
P a

3 (G′′) ≥
(k + 1)a(k + 1)a

3a(k + 2)a
> 1

for k ≥ 3. Thus P a
3 (G′) > P a

3 (G′′), a contradiction.
It follows that G′ is Kk ∗ Pn−k and P a

3 (G) ≥ P a
3 (Kk ∗ Pn−k) with equality if and

only if G is Kk ∗ Pn−k.

3. CONCLUSION

if a = 2, then P 2
1 (G) is the first multiplicative Zagreb index

∏
1(G) and from Theorems

2.7 and 2.8 we get the following corollary.

Corollary 3.1. Let G ∈ Wn,k. Then
∏

1(Kk ? Sn−k) ≤ ∏1(G) ≤ ∏1(Tn,k) with
equalities if and only if G is Kk ? Sn−k and Tn,k, respectively.

For a = 1, P 1
2 (G) is the second multiplicative Zagreb index

∏
2(G). Theorems 2.7

and 2.9 yield Corollary 3.2.

Corollary 3.2. Let G ∈ Wn,k. Then
∏

2(Kk ∗ Pn−k) ≤ ∏2(G) ≤ ∏2(Tn,k) with
equalities if and only if G is Kk ∗ Pn−k and Tn,k, respectively.

For a = 1, P 1
3 (G) is the multiplicative sum Zagreb index

∏∗
1(G). By Theorems 2.7

and 2.10 we get the following corollary.

Corollary 3.3. Let G ∈ Wn,k. Then
∏∗

1(Kk ∗ Pn−k) ≤ ∏∗1(G) ≤ ∏∗1(Tn,k) with
equalities if and only if G is Kk ∗ Pn−k and Tn,k, respectively.

In the proofs of Lemma 2.2, Theorems 2.5 (Case 1), 2.7 and 2.8, we use the
following: if 1 ≤ z1 < z2 and a > 0, then 1 ≤ za

1 < za
2 . In the proof of Theorem 2.5

(Cases 2 and 3), za represents P a
c (H)

P a
c (G′) . Since z > 1 and a > 0, we have za > 1. In the

proofs of Theorems 2.9 and 2.10, za > 1 represents P a
c (G′)

P a
c (G′′) > 1, where z > 1 and

a > 0.
Results about general multiplicative Zagreb indices for a < 0 can be obtained by

use of similar proofs and these facts:

– if z > 1 and a < 0, then 0 < za < 1,
– if 1 ≤ z1 < z2 and a < 0, then 0 < za

2 < za
1 ≤ 1.

Lemma 3.4. For a connected graph G with two nonadjacent vertices v1, v2 ∈ V (G),
we have P a

c (G) > P a
c (G+ v1v2) where c = 1, 2, 3 and a < 0.

Lemma 3.5. For a graph G with e ∈ E(G), we have P a
c (G − e) > P a

c (G) where
c = 1, 2, 3 and a < 0.
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Lemma 3.6. Let G ∈ χn,k be a graph with the smallest P a
c index for c = 1, 2, 3 and

a < 0. Then G is a complete k-partite graph.
A lower bound on general multiplicative Zagreb indices for graphs of order n and

chromatic number k, where a < 0, is given in Theorem 3.7.
Theorem 3.7. Let G ∈ χn,k. Then P a

c (G) ≥ P a
c (Tn,k) for c = 1, 2, 3 and a < 0,

with equality if and only if G is Tn,k.
Let us state lower and upper bounds on general multiplicative Zagreb indices for

graphs having order n and clique number k, where a < 0,
Theorem 3.8. Let G ∈ Wn,k. Then P a

c (G) ≥ P a
c (Tn,k) for c = 1, 2, 3 and a < 0,

with equality if and only if G is Tn,k.
Theorem 3.9. Let G ∈ Wn,k. Then for a < 0 we have P a

1 (G) ≤ P a
1 (Kk ? Sn−k)

with equality if and only if G is Kk ? Sn−k.
Theorem 3.10. Let G ∈ Wn,k. Then for c = 2, 3 and a < 0 we have P a

c (G) ≤
P a

c (Kk ∗ Pn−k) with equality if and only if G is Kk ∗ Pn−k.
Finally, we compute values of general multiplicative Zagreb indices for extremal

graphs. For 2 ≤ k < n we have n = kbn
k c+ r where 0 ≤ r < k, thus we can assume

that Tn,k has k − r partite sets of order bn
k c and r partite sets of order dn

k e.
Since Tn,k contains (k − r)bn

k c vertices of degree n − bn
k c and rdn

k e vertices of
degree n− dn

k e, we obtain

P a
1 (Tn,k) =

(
n−

⌊n
k

⌋)a(k−r)bn
k c (

n−
⌈n
k

⌉)ardn
k e

and
P a

2 (Tn,k) =
(
n−

⌊n
k

⌋)a(k−r)bn
k c(n−bn

k c) (
n−

⌈n
k

⌉)ardn
k e(n−dn

k e)
.

Moreover, Tn,k contains
(a) (k − r)bn

k c · rdn
k e edges with one end vertex of degree n− bn

k c and the other end
vertex of degree n− dn

k e,
(b)

(
k−r

2
)
bn

k c2 edges with both end vertices having degree n− bn
k c,

(c)
(

r
2
)
dn

k e2 edges with both end vertices having degree n− dn
k e.

Thus, we obtain

P a
3 (Tn,k) =

(
2n−

⌊n
k

⌋
−
⌈n
k

⌉)ar(k−r)bn
k cdn

k e (2n− 2
⌊n
k

⌋)a(k−r
2 )bn

k c2

·
(

2n− 2
⌈n
k

⌉)a(r
2)dn

k e2

.

The graph Kk ?Sn−k contains k−1 vertices having degree k−1, one vertex having
degree n− 1 and n− k vertices having degree 1, therefore we obtain

P a
1 (Kk ? Sn−k) = (n− 1)a(k − 1)a(k−1).
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Since Kk ∗ Pn−k contains k − 1 vertices having degree k − 1, one vertex having
degree k, one vertex having degree one and n − k − 1 vertices having degree 2, we
obtain

P a
2 (Kk ∗ Pn−k) = kak(k − 1)a(k−1)2

22a(n−k−1).

The graph Kk ∗ Pn−k contains
(

k−1
2
)
edges with both end vertices having degree

k − 1 and k − 1 edges with one end vertex having degree k and the other end vertex
having degree k − 1.

If n = k+1, then Kk ∗Pn−k contains one edge with one end vertex having degree k
and the other end vertex having degree one.

If n ≥ k + 2, then Kk ∗ Pn−k contains one edge with one end vertex having degree
k and the other end vertex having degree 2, one edge containing one end vertex having
degree 2 and the other end vertex having degree one and n− k − 2 edges containing
both end vertices having degree 2.

Therefore, if n = k + 1, then

P a
3 (Kk ∗ Pn−k) =

[
(k + 1)(2k − 2)(

k−1
2 )(2k − 1)k−1

]a

,

and if n ≥ k + 2, then

P a
3 (Kk ∗ Pn−k) =

[
3(k + 2)4n−k−2(2k − 2)(

k−1
2 )(2k − 1)k−1

]a

.
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