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Abstract. We obtain lower and upper bounds on general multiplicative Zagreb indices for
graphs of given clique number and order. Bounds on the basic multiplicative Zagreb indices
and on the multiplicative sum Zagreb index follow from our results. We also determine graphs
with the smallest and the largest indices.
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1. INTRODUCTION

Molecular descriptors called topological indices are graph invariants that play a signif-
icant role in chemistry, materials science, pharmaceutical sciences and engineering,
since they can be correlated with a large number of physico-chemical properties
of molecules. In theoretical chemistry, topological indices are used for modelling
properties of chemical compounds and biological activities in chemistry, biochemistry
and nanotechnology.

Let V(G) be the vertex set and let E(G) be the edge set of a graph G. The order n
of a graph G is the number of vertices of G. The degree of a vertex v € V(G), denoted
by dg(v), is the number of edges incident with v. For e € E(G) let us denote by G — e
the subgraph of G obtained by deleting the edge e from E(G). For two nonadjacent
vertices v1,ve € V(G), let us denote by G + v1vo the graph obtained by adding the
edge v1v2 to E(G).

The chromatic number of a graph G is the smallest number of colours needed to
colour the vertices of G so that no two adjacent vertices have the same colour. A clique
of a graph G is a complete subgraph of G and the clique number w(G) of G is the num-
ber of vertices in a maximum clique of G. Let x,, 1 be the set of connected graphs having
order n and chromatic number k and let W, ; be the set of connected graphs
having order n and clique number k.
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We denote the complete graph and the path graph of order n by K, and P,,
respectively. A k-partite graph is a graph whose vertices can be partitioned into k
disjoint sets so that no two vertices within the same set are adjacent. Let us denote
by Kn,.n,,.. n, the complete k-partite graph with partite sets of orders ni,ns, ..., ng.
The Turdn graph T, is a complete k-partite graph such that the orders of any two
partite sets differ by at most 1. We denote by Kj * P, _ the graph obtained by joining
one vertex of K to a pendant vertex of P,_i. The graph Ky xS, _x is obtained by
joining one vertex of Ky to n — k new vertices.

The first general multiplicative Zagreb index of a graph G is defined as

PG = ] delv)"
veEV(G)
the second general multiplicative Zagreb index is
pia) = Il de()® = T[] (deu)da())®

VeV (Q) weB(G)
and the third general multiplicative Zagreb index of G,

ria) = [[ Walw) +da),

w€eE(G)

where a # 0 is any real number. These indices generalize basic multiplicative Zagreb
indices. For a = 1, P}(G) is the Narumi-Katayama index and for a = 2, P?(G) is
the first multiplicative Zagreb index

[L@= I de>

veV(G)

For a = 1, P5(G) is the second multiplicative Zagreb index

[Lo)= II dewi®.

veV(G)

For a = 1, P4 (G) is the multiplicative sum Zagreb index

H:(G) = J] (da(u)+da)).

uwweE(G)

Multiplicative Zagreb indices for graphs of prescribed order and size were studied
in [5], graphs of given order and chromatic number in [10]. bipartite graphs in [8].
molecular graphs in [4], graph operations in [6], some derived graphs in [1] and trees
in [7]. Note that the Harary index of graphs with given matching number and clique
number was investigated in [9)].
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The indices [[,(G) (= PM;(G)) and [[,(G) (= PM>(G)) for graphs of given
clique number were considered in [3]. That paper contains mistakes. We mention only
mistakes in main statements. The value of the second multiplicative Zagreb index for
the Turdn graph presented in their Lemma 5 and Corollary 7 is incorrect (r — k must
be replaced by k — r). The lower bound on the first multiplicative Zagreb index is
incorrect. It should be PM;(G) > PM; (K x Sy—k). The value of PMy(Ky(n — k)b)
presented in the last lines of the third section is incorrect if n = k 4+ 1. Correct values
are presented in our conclusion.

We study bounds on general multiplicative Zagreb indices for graphs of given
order and clique number (chromatic number) and results on multiplicative Zagreb
indices (including the multiplicative sum Zagreb index which has not been considered
in combination with clique number before) are corollaries of our main results.

2. RESULTS

We study connected graphs of order n and clique number k (chromatic number k),
thus we can assume that k > 2 since every connected graph having at least 2 vertices
has clique number and chromatic number at least 2. We can also assume that n > k
since the only graph in W, ;, and x, x for n = k is a complete graph.

Lemma 2.1. Let n =n3 +ng + ...+ ng. Then for any a # 0 we have

I
=
£
\
3

s
I
—

Pla(Knhnz,...,nk.)

)ani
)

an;(n—n;)
’

P;(Kn1,n2,...,nk) (nfnl)

Il

@
I
—

Pg (K, ingyceim) = H (2n —n; —n;)*"".
1<i<j<k

Proof. The vertices of Ky, n,...n, can be divided into k sets Ny, Na, ..., Nj, where
|N;| = n; for i = 1,2,...,k, such that no two vertices in the same set are adjacent
and any two vertices from different sets are adjacent. Every vertex in IN; has degree
n — n;, thus

k

Pla(Knl,nmm,nk) = (n - nl)anl (’I’L - n2)an2 s (n - nk)ank = H(TL - ni)ani
i=1

and

P§ (Ko cms) = (1= )™ 070 (= mg) 720720 = o)

k
= L0 — nyemstnmo,
=1
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Since for 1 < ¢ < j < k there are n;n; edges connecting vertices in N; (of degree
n —n;) and vertices in N; of (degree n — n;), we obtain

Py (K, ny,...ny) = (20— 1y —ng)*™ "2 (2n — ny — ng)*™"™e

e (2’)’[, — Np—1 — nk)ank,lnk
- H (2n —n; —ny)*n. 0
1<i<j<k

We show that by adding an edge to a graph GG, we obtain a graph having larger
general multiplicative Zagreb indices.

Lemma 2.2. For a connected graph G with two nonadjacent vertices vy,vy € V(G),
we have P2(G) < P*(G + v1vs) where ¢ =1,2,3 and a > 0.

Proof. Let G’ = G + vivs. For j = 1,2, we have
1 < da(vj) < der(v;),
which means that
1< dg('l)j)a < dG/(vj)“.
Thus, P{(G) < Pf(G'). Similarly,
1< dG(,Uj)adG(vj) < dG,(Uj)adcx(vj)7

so P (G) < P3(G).
Since
2< dg(v1) + dg(’l)g) < dgr (1)1) + dGl(UQ),

we obtain
1< (dg(v1) +dg(v2))* < (dg(v1) + dgr(v2))* and P§(G) < P§(G). O

Similarly, the following lemma can be proved.

Lemma 2.3. For a graph G with e € E(G), we have P*(G — e) < P%(G) where
c=1,2,3 and a > 0.

Let us study graphs of order n and chromatic number k.

Lemma 2.4. Let G € xp,, be a graph with the largest P¢ index for ¢ =1,2,3 and
a > 0. Then G is a complete k-partite graph.

Proof. Since the chromatic number of G is k, its vertices can be divided into k colour
sets. Note that there is no edge between vertices in the same set, so G is a k-partite
graph with partite sets of orders ni,no,...,ng. Since G has the largest P? index,
by Lemma 2.2, G is K, O

1,12, "
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Theorem 2.5 gives an upper bound on general multiplicative Zagreb indices for
graphs of order n and chromatic number k.

Theorem 2.5. Let G € xy5. Then PY(G) < PY(T,x) for ¢ = 1,2,3 and a > 0,
with equality if and only if G is T, k.

Proof. By Lemma 2.4, we know that a graph G’ with the largest P# index for ¢ = 1,2, 3,
is a complete k-partite graph Ky, n,.... n.- We prove by contradiction that G’ is T},
(and no other graph). Assume to the contrary that G’ is Ky, n,.....n,, Where n; > n;+1
for some 4, j € {1,2,...,k}. Without loss of generality we can assume that ny > ng+2
(which means that ny —ne > 2). Let H be the graph Ky, —1 5y41,n5,....n, - We distinguish
three cases.

Case 1. ¢ =1. By Lemma 2.1,

k
PE(G") = (n—n1)™™ (n— n2) ™ [[ (n — ny)™™
1=3
k
[(n — n1)(n = n2)]2"2 (n — ny )27 T (0 — ng)om
1=3
and
k
PE(H) = (n— (1 —1))*™ =D (n — (np +1))°C=D T (n — ny)e™
1=3
=[(n—n1+1)(n —ng —1)]*"2
k
(n_n1+1>a(n1 ng— 1) n_n2_1 aH n_n ani.
1=3
Since

m—ni+1)n—m2—1)=Mn—-—n1)(n—n2)+n1 —na—1>(n—n1)(n—na),
we have
[(n—n1+1)(n—ng—1)]" > [(n —n1)(n —ng)]*"2.
We also know that (n —ny + 1)4"1—m2=0 > (n —pp)emi=m2=0 and (n —ny — 1)* >
(n —nq)?, thus PA(H) > P{(G’), a contradiction.
Case 2. ¢ = 2. By Lemma 2.1,

k
PQa(G/) _ (n o nl)anl(nfnl)(n o nQ)ang(nfnz) H(n _ ni)ani(nfni)
=3
and

k
P;(H) = (n —ny+ 1)a(n171)(n7n1+1)(n ey — 1)a(n2+1)(n7n271) H(n o ni)ani(nfni).
1=3
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Then

PZ‘I(H) (n —ny + 1)an1(n7n1)(n —ny + 1)a(2n17n71)
PQU‘(G/> - (Tl _ nl)anl (n—n1)
(TL — Ny — l)anQ(nfn2)(n —ny — 1)a(n72n271)
(Tl _ nz)ang(n—nQ)
(Tl —ny+ 1)(71 —ny — 1) angz(n—ngz) (Tl — g — 1)a(n72n271)

(n—mn1)(n —ng) (n—ny + 1)e(n—2m+1)

since 717—1117;:1 > 1 and ny(n —n1) > na(n — ng) (note that the equality holds if only if

n =ny + nz). Since (n —ny + 1)(n —nz2 — 1) > (n — ny1)(n — n2), we have

(n —ny +1)(n — ny —1)]*"27"2)

(n —n1)(n —ng)

> 1.

Therefore

PR(H) _ (n—my = 10t
Pza(G/) (n —ny + l)a(n72n1+1)

L,

sincen—mo—1>n—n;+1and n—2ny—1>n—2ny + 1. Hence, Py (H) > P3(G'),
a contradiction.

Case 3. ¢ = 3. We have

P¢(H) (2n—mn1— ng )@ —1D(n2+1) HlSpSkm;ﬁLQ(Qn —ny—my A+ 1)@np(na=1)
Pél(G’) (2n — Ny — n2)an1n2 ngpgk,p;él,2(2n —np — nl)anpnl
ITicpenppro(2n = np —ng — 1)@me(n2tl)
[Li<p<ipr1,2(2n — np —ng)amenz

(QTL —nqg — nQ)a(nlnngnlfngfl)

(2n — ny — ng)aninz

H (2n —n, —ng + 1)eme(a=1)

(2n — ny — ng )™
1<p<k,p#1,2 P

anp(na+1)

)

)

(2n—np —ng —1)

11 )

(2n — ny, — ng)anenz
1<p<k,p#1,2
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> ]I (2n—np —n1 + 1)‘”“ 1)
L<pshppre (2T = M)

any n2+1

H (2n—ny, —ng —1)
1<p<k,p#1,2 (2n =N = ng)enene

1 anpni
= H (1 + > (2n—mnp, —ng +1)7"

1<p<k,p#1,2

1 anpng
M — ny — ng — 1)37
11 ( ) a1

1<p<k,p#1,
1 anpng 1 anpnz
> (1 T ) (1 e )
1<pShptl 2 n—np, —ng n—np — N
<2n—np no 1>an”
1<p<k,p#1,2 2n—np —m +1
1 1 anang
> T (o =) (om=)] o0
1 <phptl 2 n—n, —ni n—n, — N
since n1 > no + 2 and (1 + 2n7$p7m )(1— 2n7n1p7n2) > 1. Hence, P{(H) > P¢(G"),
a contradiction. O

In the proof of Theorem 2.7 we use the following result of Erdés [2].

Lemma 2.6. Let G be a graph having clique number at most k. Then there exists
a k-partite graph G" such that V(G") = V(G) and dg(v) < dgr(v) for every vertex
v e V(Q).

Now we obtain an upper bound on general multiplicative Zagreb indices for graphs
of order n and clique number k.

Theorem 2.7. Let G € W, . Then P*(G) < P(T, 1) for c=1,2,3 and a > 0, with
equality if and only if G is T}, .

Proof. Let G be any graph in W, ;. By Lemma 2.6, there is a k-partite graph G” where
V(G") =V(G) and dg(v) < dgr(v) for every vertex v € V(G). Thus d&(v) < dg&. (v),
(dg(v))*de®) < (dgn(v))*@e” () and (dg(u) + da(v))® < (dgr(u) + dgr(v))?, where
u,v € V(G). This implies that P*(G) < P%(G") for ¢ = 1,2,3. By Lemma 2.2,
P*(G") < P*(@G'), where G’ is a complete k-partite graph. Since every complete
k-partite graph having order n is in W, ;, and also in Xy, x, by Theorem 2.5, we obtain
P%(G) < P(T,,) with equality if and only if G is T}, . O

C

Let us present a lower bound on the first general multiplicative Zagreb index for
graphs having order n and clique number k.

Theorem 2.8. Let G € W,, .. Then for a > 0 we have PA(G) > P{*(Ky * Sp—k) with
equality if and only if G is Ky * Sp_k-
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Proof. Let G’ be a graph in W, ;, having the smallest P{* index. Since G' € W, 4,
we know that G’ contains a complete graph K as a subgraph. Let us denote the
vertices of this complete graph by vy, vs,...,vx. By Lemma 2.3, G’ is a graph obtained
from K} by attaching trees to some vertices of K.

Claim 1. If G’ contains a tree T attached to v; (1 <i < k), then T is a star.

Assume that T is not a star attached to v; by its centre. Then T" contains a vertex u (u #
v;) with degree at least 2 adjacent to some pendent vertices. Let u’ be a vertex of T with
degree at least 2 which is furthest from v;. Let uq, uo, ..., u, (where p > 1) be pendent
vertices adjacent to u’. Let G” = G’ — {v/uq, v/ ug, ..., w'up} + {vius, vius, ..., viupy}.
Then dg:(v') =p+ 1, dgv(v') = 1, dev (v;) = k1 and dgr (v;) = k1 + p where k; > k.
Consequently,

PG = PHG") = k{(p+ 1) — (k1 +p)*.

Clearly k1 (p+1) = kip+k1 > k1+p, so [k1(p+1)]* > (k1+p)* and PP(G'")—P(G") > 0.
Since P{(G’) > P{*(G"), we have a contradiction. Hence, T is a star.

Claim 2. Only one vertex v; (1 <4 < k) is adjacent to pendent vertices.

Assume that G’ contains (at least) two different vertices v;, v; adjacent to pendent
vertices. Let s be the number of pendent vertices adjacent to v; and let ¢ be the number
of pendent vertices adjacent to v;. We can denote the pendent vertices adjacent to v;
by wi,wa, ..., we. Let G’ = G' — {vjwi, vjws, ..., v;w} + {viwr, viws, ..., v;w }. Let
ki1 =k—1. Then d¢g- (’Ui) = k1 +s, dGH(Uz‘) =ki+s+t, dg (’Uj) =ki+t, dgr (’Ui) = k.
Thus

PHG") — PHG") = (k1 + )" (k1 + 1) — (k1 + s+ £)*kS.

Since (k1 +s)(k1+1t) > (k1 +s+t)k1, we get [(k1+s)(k1 + )] > [(k1 4+ s+t)k1]* and
consequently P(G’) — P{#(G") > 0. Thus PA(G') > PA(G"), which is a contradiction.

From Claims 1 and 2 it follows that P{(G) > P{(Kj, x Sp—k) with equality if and
only if G is Kj xSy _p. O

Lower bounds on the second and third general multiplicative Zagreb indices for
graphs of order n and clique number k are given in Theorems 2.9 and 2.10.

Theorem 2.9. Let G € Wy, .. Then for a > 0 we have Ps(G) > Ps(Kj * P,_y) with
equality if and only if G is Ky * P,_j.

Proof. Let G’ be a graph in W, ;, having the smallest Py index. Since G’ € W, i, we
know that G’ contains a complete graph K}, as a subgraph. Let us denote the vertices
of this complete graph by vy, vs,...,v;. By Lemma 2.3, G’ is a graph obtained from
K. by attaching trees to some vertices of Kj.

Claim 1. If G’ contains a tree T attached to v; (1 < i < k), then T is a path.

Assume that T is not a path attached to v; by its end vertex. Then T contains (at
least) 2 pendant vertices, say u,w. Let « be the closest vertex to v having degree at
least 3 in G’ and let z; be a vertex adjacent to x which belongs to the path connecting
u and z (possibly x; = u). Let G = G’ — {zx1} + {wx1}. We have dg/(x) = p > 3,
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dgi(x) = p—1, dg'(w) = 1 and dgr(w) = 2. For any other vertex v, we have

dG/ (’U) = dG// (’U) ThuS,
1\
(1 T 1) 1 > 1,
p—

since & > 3 and (1+ p%l)p_l > 2. We have P§(G’) > P§(G"), a contradiction.
Note that dg/(v;) =k — 1 or k, where 1 < i < k. Let

Pg(G") PP

P5(E") "~ #(p— )

13

V/:{'Uii].giék,dG/(Ui) >k—1}.

Claim 2. |V'| = 1.
Assume that |V'| > 2. Let v;,v; € V. Let Py = v;uiuz ... us and Pr = vjwiws ... w;
(where s,t > 1) be the paths attached to v; and vj, respectively. Let G" = G’ —
{vjwr} + {uswr}. If dgr(vj) = 2, then G’ and G” are paths, so we can assume that
dG/(’l}j) =k > 3. Then dG//(vj) =k—1,dg (ug) =1 and dg» (UQ) = 2. For any other
vertex v, we have dg/ (v) = dg(v). Thus
P3(&) g

P2(L(G/I) - 4a(k _ 1)a(k—1) >

L,

as in Claim 1. We have P$(G’) > P§(G"), a contradiction.

It follows that G’ is Kj * P,,_j and P§(G) > P§(Ky, * P,_j) with equality if and
only if G is Ky x P,_. O]

Theorem 2.10. Let G € W, ;. Then for a > 0 we have P§(G) > P§(Ky % Py_y)
with equality if and only if G is Ky, * Py _j.

Proof. Let G’ be a graph in W, ;, having the smallest P§ index. Since G’ € W, 1., we
know that G’ contains a complete graph K}, as a subgraph. Let us denote the vertices
of this complete graph by vy, ve, ..., vr. By Lemma 2.3, G’ is a graph obtained from
K}, by attaching trees to some vertices of K.

Claim 1. If G’ contains a tree T attached to v; (1 < i < k), then T is a path.

Assume that T is not a path attached to v; by its end vertex. Let v € T be a vertex of
degree x > 3 furthest from v; (possibly v = v;). Let u and w be two pendant vertices
of T such that v is on the u — v; path and on the w — v; path. Let vujus ... us_1u be
a path connecting v and u, and let vwiws ... w;_1w be a path connecting v and w.

For s,t > 2,1et G = G'—{vw; }+{uw; }. We have dg (v) = © > 3, dgr(v) =2 — 1,
de(u) = 1, dgv(u) = 2 and for all the other vertices x we have dg/(x) = dg ().
We consider the edges vwy; € E(G'), uw; € E(G"”) and the edges vuy,us_1u
in G’ and G” and obtain

Py(G)
Py(C")

3%(x +2)%(x +2)¢

>
- 16%(x + 1)@
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We did not consider some edges of G’ and G” adjacent to v, because we know that
the contribution of these edges in P§(G’) is greater than their contribution in P§(G")
(since dg/(v) =z and dgv (v) =z — 1).

3%z +2)%(z+2)*  [3(x+1)(x+3)+3]" _ [3(z+3)]"
16a(z 4+ 1)@ 16(z + 1) }>[ 16 ]>1

for x > 3. Thus, P§(G’) > P$(G"), a contradiction.

The cases s > 1,t=1and t > 1,s = 1 can be solved using the same method, so
without loss of generality we can assume that s > 1,¢ = 1. Let G = G' — {vw}+ {uw}.
We have dg/(v) =2 > 3, dgr(v) =2 —1, dgr(u) = 1, dgr(u) = 2. If s > 2, we consider
the edges vw € E(G’), uw € E(G") and vu, us—1u in G’ and G and we obtain

3z +1)"(x+2)*  [(x+2 a>1
12¢(z + 1)\ 4

PG
P (G")

>

for x > 3.1If s = 1, we consider the edges vw € E(G"), uvw € E(G") and vu in G’ and G”
and get

P§(G") S (z+ 1) (z+1)*  [(z+1\" o1
Pg(G") =  3e(z+1)*  \ 3

for > 3. So, again we obtain P§(G’) > P$(G"), a contradiction.
Note that dg/(v;) = k — 1 or k, where 1 <i < k. Let

V/:{Uillgiék,dcy(’vi) >k—1}.

Claim 2. |V'| = 1.
Assume that |V’| > 2. Let v;,v; € V. Let P = v;uqus ... us and Py = vjwiwsy ... w;
(where s,t > 1) be the paths attached to v; and wvj, respectively. Let G" =
G’ — {vjwr} + {uswi }. If dgr(vj) = 2, then G" and G” are paths, so we can assume
that dg(vj) = k > 3. Then dgr (v;) = k — 1, dg/(us) = 1 and dgr (us) = 2. For any
other vertex v, we have dg/(v) = dgr (v).

If s,t > 2, we consider the edges vjw1 € E(G'), uswr € E(G”) and the edges
usts—1,v;0; in G’ and G and obtain

PG 3%(k+2)"(2k)° _ [3(2k — 1)(2k +5) 15 ¢
P¢(G") = 1692k —1)a [ 32(2k — 1) 32(2k — 1)
3(2k+5)1°
SECES]

for k > 3. (We did not consider some edges of G’ and G adjacent to v;, because we
know that the contribution of these edges in P§(G’) is greater than their contribution
in P$(G").) Thus P§(G") > P$(G"), a contradiction.

The cases s > 1,t =1 and t > 1,s = 1 can be solved using the same technique,
thus without loss of generality we can assume that s > 1,¢t = 1. We consider the edges
vjwy € E(G"), uswi € E(G") and usus—1,v;v; in G and G” and get
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PG 3°(k+1)"(2k)" _ {(k—k 1)2kr )
Pg(G") = 1202k — 1) |[4(2k—1)

since kK +1 >4 and 2k > 2k — 1 for k > 3.
If s=1 and t = 1, we consider the edges vjwi € E(G’), wuwy € E(G") and v;uy
in G’ and G” and get
PG S (k+1)(k+1)*
P¢(G") — 3%(k+2)
for k > 3. Thus P§(G’) > P§$(G"), a contradiction.

It follows that G’ is Kj x P,_j, and P§(G) > P$(Ky * P,_j) with equality if and
only if G is Ky * P,_. O]

>1

3. CONCLUSION

if a = 2, then P?(G) is the first multiplicative Zagreb index [],(G) and from Theorems
2.7 and 2.8 we get the following corollary.

Corollary 3.1. Let G € W, ;. Then [[;(Kk * Sn—k) < [[1(G) < [1,(Thx) with
equalities if and only if G is Ky x Sy, and T, i, respectively.

For a = 1, P3(G) is the second multiplicative Zagreb index [],(G). Theorems 2.7
and 2.9 yield Corollary 3.2.

Corollary 3.2. Let G € Wy . Then [[o(Ky * Pr—g) < [[,(G) < [[5(Thk) with
equalities if and only if G is Ky, * P,_j, and T, 1, respectively.

For a = 1, P}(G) is the multiplicative sum Zagreb index [];(G). By Theorems 2.7
and 2.10 we get the following corollary.

Corollary 3.3. Let G € W, . Then [[[(Ky * Po—i) < [[}(G) < TI;(Th.x) with
equalities if and only if G is Ky, * P,_j, and T, 1, respectively.

In the proofs of Lemma 2.2, Theorems 2.5 (Case 1), 2.7 and 2.8, we use the
following: if 1 < 21 < 29 and a > 0, then 1 < 2§ < 2§. In the proof of Theorem 2.5
(Cases 2 and 3), 2% represents %. Since z > 1 and a > 0, we have z* > 1. In the

proofs of Theorems 2.9 and 2.10, 2* > 1 represents % > 1, where z > 1 and
a> 0. )

Results about general multiplicative Zagreb indices for a < 0 can be obtained by
use of similar proofs and these facts:

—ifz>1and a <0, then 0 < 2% < 1,
—if1 <z <z anda<0,then 0 < 2§ < 2f < 1.

Lemma 3.4. For a connected graph G with two nonadjacent vertices vy,vy € V(G),
we have P2(G) > P%(G + v1v2) where ¢ =1,2,3 and a < 0.

Lemma 3.5. For a graph G with e € E(G), we have P*(G —e) > P%(G) where
c=1,2,3 and a < 0.
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Lemma 3.6. Let G € Xy be a graph with the smallest P{ index for c =1,2,3 and
a < 0. Then G is a complete k-partite graph.

A lower bound on general multiplicative Zagreb indices for graphs of order n and
chromatic number k, where a < 0, is given in Theorem 3.7.

Theorem 3.7. Let G € xpnk. Then P*(G) > P2(T, ) for ¢ = 1,2,3 and a < 0,
with equality if and only if G is T}, .

Let us state lower and upper bounds on general multiplicative Zagreb indices for
graphs having order n and clique number k, where a < 0,

Theorem 3.8. Let G € W, . Then P*(G) > P*(T, ) forc =1,2,3 and a < 0,
with equality if and only if G is T, .

Theorem 3.9. Let G € Wy, .. Then for a < 0 we have P{(G) < P{(Ky * Sp—k)
with equality if and only if G is Ky * Sp—k-

Theorem 3.10. Let G € W, i. Then for ¢ = 2,3 and a < 0 we have P*(G) <
Pe(Ky, x P,_) with equality if and only if G is Ky x P, _.

Finally, we compute values of general multiplicative Zagreb indices for extremal
graphs. For 2 < k < n we have n = k| %] + r where 0 < < k, thus we can assume
that T}, has k — r partite sets of order | 2] and r partite sets of order [Z].

Since T}, x contains (k — )| 7] vertices of degree n — [%] and r[%] vertices of

degree n — [ 7], we obtain

. n |\ ek—r)| 2] nyer| #1
Pt = (o= [3)77 (- [3])

Py (Twx) = (n - {E

Moreover, T), j, contains

|

and

(a) (k—r)[%]-r[%] edges with one end vertex of degree n — [ %] and the other end
vertex of degree n — [ %],
(b) (k;T) L%JZ edges with both end vertices having degree n — L%J’

(¢) (5)[%#]? edges with both end vertices having degree n — [%].
Thus, we obtain

n n

) ni rapyert-n|E ] nya(z)2)”
P = (2= 7]~ [3]) o (20-2[%])

n\eG2]?
2 )

The graph K} %S, ) contains k — 1 vertices having degree k — 1, one vertex having
degree n — 1 and n — k vertices having degree 1, therefore we obtain

PH(Kp % Sy_p) = (n—1)%(k — 1)1,
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Since Ky, * P,,_j contains k — 1 vertices having degree k — 1, one vertex having
degree k, one vertex having degree one and n — k — 1 vertices having degree 2, we

obtain 2
P (K, % Py_y) = k™ (k — 1)2(k=1)7g2a(n=k=1)

The graph K} * P,_j contains (kgl) edges with both end vertices having degree
k —1 and k — 1 edges with one end vertex having degree k and the other end vertex
having degree k — 1.

If n =k+1, then Kj * P,_; contains one edge with one end vertex having degree k
and the other end vertex having degree one.

If n > k + 2, then Ky, % P,_j contains one edge with one end vertex having degree
k and the other end vertex having degree 2, one edge containing one end vertex having
degree 2 and the other end vertex having degree one and n — k — 2 edges containing
both end vertices having degree 2.

Therefore, if n = k+ 1, then

k—
2

Py (K + Pa-i) = [(k+ 1)(2k — 2)("27) (20 - 1);6_1}“ 7
and if n > k + 2, then
P (Ky * Py_y) = {S(k +2)4"F2(2k — 2)(k51)(2k _ 1)k71r .
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