PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and Hardness of Cold Forged 42CrMo4 Steel Hollow Component with the Outer Flange

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For decades, steel has been a crucial structural material. Mainly low-alloy steel grade ISO 42CrMo4 is utilized for manufacturing forgings. This paper investigates the microstructure and hardness development of the 42CrMo4 steel hollow component with an outer flange. The component has been formed via cold forging in combination with extrusion and upsetting technologies. Prior to forming, the workpiece was annealed to obtain hardness at the level of 181±9 HV0.3. The FEM analysis reveals the areas that undergo higher stress and strain. The flow lines macrostructure and microstructure of hollow parts were investigated using light optical microscopy (LOM) and scanning electron microscopy (SEM) equipped with EDS. Vickers hardness allows identifying the work hardening of the crucial element areas. The microstructure consists of ferrite matrix and semi-globular carbides. Laboratory studies confirm appropriate flow lines arrangement, which corresponds well to those shown by FEM computer simulations. The highest hardness at the level of 293±7 HV0.3 was identified in the flange area, where the material shows a higher distribution of effective strain revealed by FEM. Cold metal forming results in work-hardening of the steel. The work hardening ranges up to 1.62 of the initial 42CrMo4 steel hardness. The metal forming process did not affect the microstructural uniformity of the flanged hollow part. The final outer flange component presents high quality and is free from plastic deformation nonuniformities.
Twórcy
  • Department of Materials Engineering, Mechanical Engineering Faculty, Lublin University of Technology, Poland, Nadbystrzycka 36, 20-618, Lublin, Poland
  • Department of Metal Forming Technologies, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Metal Forming Technologies, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Department of Metal Forming Technologies, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. E. Gadalińska, A. Baczmański, C. Braham, G. Gonzalez, H. Sidhom, S. Wroński, T. Buslaps, K. Wierzbanowski, Stress localisation in lamellar cementite and ferrite during elastoplastic deformation of pearlitic steel studied using diffraction and modelling, International Journal of Plasticity. 127 (2020) 102651. https://doi.org/10.1016/j.ijplas.2019.102651.
  • 2. M. Duda, D. Rozumek, G. Lesiuk, M. Smolnicki, B. Babiarczuk, J. Warycha, Fatigue crack growth under mixed-mode I + II and I + III in heat treated 42CrMo4 steel, Int J Fract. 234 (2022) 235–248. https://doi.org/10.1007/s10704–021–00585–0.
  • 3. B. Białobrzeska, Effect of Alloying Additives and Microadditives on Hardenability Increase Caused by Action of Boron, Metals. 11 (2021) 589. https://doi.org/10.3390/met11040589.
  • 4. Ł. Konat, R. Jasiński, B. Białobrzeska, Ł. Szczepański, Analysis of the static and dynamic properties of wear-resistant Hardox 600 steel in the context of its application in working elements, Materials Science-Poland. 39 (2021) 86–102. https://doi.org/10.2478/msp-2021–0007.
  • 5. W. Macek, Fracture Areas Quantitative Investigating of Bending-Torsion Fatigued Low-Alloy High-Strength Steel, Metals. 11 (2021) 1620. https://doi.org/10.3390/met11101620.
  • 6. J. Tomków, A. Czupryński, D. Fydrych, The Abrasive Wear Resistance of Coatings Manufactured on High-Strength Low-Alloy (HSLA) Offshore Steel in Wet Welding Conditions, Coatings. 10 (2020) 219. https://doi.org/10.3390/coatings10030219.
  • 7. C. Sun, P.-X. Fu, H.-W. Liu, H.-H. Liu, N.-Y. Du, Effect of Tempering Temperature on the Low Temperature Impact Toughness of 42CrMo4-V Steel, Metals. 8 (2018) 232. https://doi.org/10.3390/met8040232.
  • 8. V. Malau, W.I. Fauzi, Effects of Heat Treatments on Mechanical Properties, Specific Wear and Corrosion Rate of HQ 809 Steel for Machinery Components Application, in: 2018 4th International Conference on Science and Technology (ICST), 2018: pp. 1–6. https://doi.org/10.1109/ICSTC.2018.8528600.
  • 9. J.S. Kimm, J.A. Bergmann, F. Wöste, F. Pöhl, P. Wiederkehr, W. Theisen, Deformation behaor of 42CrMo4 over a wide range of temperatures and strain rates in Split-Hopkinson pressure bar tests, Materials Science and Engineering: A. 826 (2021) 141953. https://doi.org/10.1016/j.msea.2021.141953.
  • 10. M. Szala, G. Winiarski, Ł. Wójcik, T. Bulzak, Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness, and Strain-Hardening Coefficients of 42CrMo4 Steel, Materials. 13 (2020) 2022. https://doi.org/10.3390/ma13092022.
  • 11. N. Troß, J. Brimmers, T. Bergs, Tool wear in dry gear hobbing of 20MnCr5 case-hardening steel, 42CrMo4 tempered steel and EN-GJS-700–2 cast iron, Wear. 476 (2021) 203737. https://doi.org/10.1016/j.wear.2021.203737.
  • 12. P.B. Zaman, M.N. Sultana, N.R. Dhar, Multivariant hybrid techniques coupled with Taguchi in multi-response parameter optimisation for better machinability of turning alloy steel, Advances in Materials and Processing Technologies. 0 (2021) 1–21. https://doi.org/10.1080/2374068X.2021.1945302.
  • 13. ASM Handbook: Vol. 4: Heat Treating, 10 Edition, ASM International, Materials Park, Ohio, 1991.
  • 14. M.M. Blaoui, M. Zemri, A. Brahami, Effect of heat treatment parameters on mechanical properties of medium carbon steel, Mechanics and Mechanical Engineering. Vol. 22 (2018). http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-087c26c2–2c73–4e7a-b73d-ecd871983f8b (accessed July 26, 2022).
  • 15. W. Woźniak, M. Sąsiadek, T. Jachowicz, M. Edl, P. Zając, Studies on the Mechanical Properties of C45 Steel with Martensitic Structure after a High Tempering Process, Adv. Sci. Technol. Res. J. 16 (2022) 306–315. https://doi.org/10.12913/22998624/150564.
  • 16. E. Karadeniz, Influence of different initial microstructure on the process of spheroidization in cold forging, Materials & Design. 29 (2008) 251–256. https://doi.org/10.1016/j.matdes.2006.11.015.
  • 17. E. Hao, Y. An, X. Liu, Y. Wang, H. Zhou, F. Yan, Effect of annealing treatment on microstructures, mechanical properties and cavitation erosion performance of high velocity oxy-fuel sprayed NiCoCrAlYTa coating, Journal of Materials Science & Technology. 53 (2020) 19–31. https://doi.org/10.1016/j.jmst.2020.03.030.
  • 18. H. Bounezour, L. Laouar, M. Bourbia, B. Ouzine, Effects of work hardening on mechanical metal properties–experimental analysis and simulation by experiments, Int J Adv Manuf Technol. 101 (2019) 2475–2485. https://doi.org/10.1007/s00170–018–3071-x.
  • 19. T. Li, J. Zheng, Z. Chen, Description of full-range strain hardening behavior of steels, Springerplus. 5 (2016). https://doi.org/10.1186/s40064–016–2998–3.
  • 20. P. Yadav, K.K. Saxena, Effect of heat-treatment on microstructure and mechanical properties of Ti alloys: An overview, Materials Today: Proceedings. 26 (2020) 2546–2557. https://doi.org/10.1016/j.matpr.2020.02.541.
  • 21. M. Kang, M. Park, B. Kim, H.C. Kim, J.B. Jeon, H. Kim, C.Y. Choi, H.S. Park, S.-H. Kwon, B.J. Kim, Effect of Heat Treatment on Microstructure and Mechanical Properties of High-Strength Steel for in Hot Forging Products, Metals. 11 (2021) 768. https://doi.org/10.3390/met11050768.
  • 22. P. Widomski, M. Zwierzchowski, A. Barełkowski, M. Tympalski, Case study of the effect of precoating on the decarburization of the surface layer of forged parts during the hot die forging process, Materials. 14 (2021) 422. https://doi.org/10.3390/ma14020422.
  • 23. T. Bulzak, K. Majerski, J. Tomczak, Z. Pater, Ł. Wójcik, Warm skew rolling of bearing steel balls using multiple impression tools, CIRP Journal of Manufacturing Science and Technology. 38 (2022) 288–298. https://doi.org/10.1016/j.cirpj.2022.05.007.
  • 24. Z. Gronostajski, M. Hawryluk, P. Jabłoński, M. Zwierzchowski, A. Barelkowski, P. Widomski, The Effect of Heat Treatment of Forgings Directly from the Forging Temperature on their Properties, Archives of Metallurgy and Materials. 65 (2020) 685–696. https://doi.org/10.24425/amm.2020.132807.
  • 25. W. Macek, R.F. Martins, R. Branco, Z. Marciniak, M. Szala, S. Wroński, Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing, Int J Fract. (2022). https://doi.org/10.1007/s10704–022–00615–5.
  • 26. M. Kowal, M. Szala, Diagnosis of the microstructural and mechanical properties of over centuryold steel railway bridge components, Engineering Failure Analysis. 110 (2020) 104447. https://doi.org/10.1016/j.engfailanal.2020.104447.
  • 27. S. Hashmi, Comprehensive Materials Finishing, Elsevier, Kidlington, Oxford, United Kingdom, 2017.
  • 28. G. Winiarski, T.A. Bulzak, Ł. Wójcik, M. Szala, Effect of Tool Kinematics on Tube Flanging by Extrusion with a Moving Sleeve, Adv. Sci. Technol. Res. J. 13 (2019) 210–216. https://doi.org/10.12913/22998624/110741.
  • 29. Ł. Wójcik, T. Bulzak, G. Winiarski, M. Szala, Numerical analysis of three-stage the forming process hollow forgings with an outer flange, Scientific Journals of the Maritime University of Szczecin. 134 (2020) 142–147. https://doi.org/10.17402/429.
  • 30. T. Bulzak, G. Winiarski, Ł. Wójcik, M. Szala, Application of Numerical Simulation and Physical Modeling for Verifying a Cold Forging Process for Rotary Sleeves, J. of Materi Eng and Perform. (2021). https://doi.org/10.1007/s11665–021–06314-x.
  • 31. A. Gontarz, G. Winiarski, Numerical and Experimental Study of Producing Two-Step Flanges by Extrusion with a Movable Sleeve, Archives of Metallurgy and Materials. 62 (2017). http://journals.pan.pl/dlibra/docmetadata?id=105047 DOI – 10.1515/amm-2017–0071.
  • 32. G. Winiarski, Theoretical and experimental study on the effect of selected parameters in a new method of extrusion with a movable sleeve. Materials. 15 (2022) 4585. https://doi.org/10.3390/ma15134585.
  • 33. G. Winiarski, T.A. Bulzak, Ł. Wójcik, M. Szala, A New Method of Flanges Extrusion in Hollow Products – Analysis of the Limiting Phenomena, Adv. Sci. Technol. Res. J. 14 (2020) 78–85. https://doi.org/10.12913/22998624/125508.
  • 34. G. Winiarski, T. Bulzak, M. Szala, Numerical analysis of a two-stage forming process for a hollow part with external flange, J. Phys.: Conf. Ser. 1736 (2021) 012005. https://doi.org/10.1088/1742–6596/1736/1/012005.
  • 35. G. Winiarski, T. Bulzak, L. Wójcik, M. Szala, Cold forging of a hollow flanged part by an unconventional extrusion method, J. Phys.: Conf. Ser. 2130 (2021) 012019. https://doi.org/10.1088/1742–6596/2130/1/012019.
  • 36. G. Winiarski, T.A. Bulzak, Ł. Wójcik, M. Szala, Numerical Analysis of a Six Stage Forging Process for Producing Hollow Flanged Parts from Tubular Blanks, Adv. Sci. Technol. Res. J. 14 (2020) 201–208. https://doi.org/10.12913/22998624/116748.
  • 37. K. Drozd, M. Walczak, M. Szala, K. Gancarczyk, Tribological Behavior of AlCrSiN-Coated Tool Steel K340 Versus Popular Tool Steel Grades, Materials. 13 (2020) 4895. https://doi.org/10.3390/ma13214895.
  • 38. M. Kaszuba, P. Widomski, P. Białucki, A. Lange, B. Boryczko, M. Walczak, Properties of new-generation hybrid layers combining hardfacing and nitriding dedicated to improvement in forging tools’ durability, Archiv.Civ.Mech.Eng. 20 (2020) 78. https://doi.org/10.1007/s43452–020–00080–8.
  • 39. Y.X. Wu, W.W. Sun, X. Gao, M.J. Styles, A. Arlazarov, C.R. Hutchinson, The effect of alloying elements on cementite coarsening during martensite tempering, Acta Materialia. 183 (2020) 418–437. https://doi.org/10.1016/j.actamat.2019.11.040.
  • 40. Y. Tanaka, F. Pahlevani, S.-C. Moon, R. Dippenaar, V. Sahajwalla, In situ characterisation of MnS precipitation in high carbon steel, Sci Rep. 9 (2019) 10096. https://doi.org/10.1038/s41598–019–46450-y.
  • 41. B. L. Ferguson, Z. Li, A. M. Freborg, Modeling heat treatment of steel parts, Computational Materials Science. 34 (2005) 274–281. https://doi.org/10.1016/j.commatsci.2005.02.005.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ce482fe-9ef4-40ad-8605-2f501a44f83e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.