PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphological and Material Properties of Polyethyleneterephthalate (PET) Fibres with Spores Incorporated

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości morfologiczne i strukturalne włókien z polietylenu tereftalatu domieszkowanych zarodnikami
Języki publikacji
EN
Abstrakty
EN
Owing to the current demand for textiles with new functionalities and improved properties, there has been a continuous effort to modify Polyethylene terephthalate (PET) materials. In our previous study, we demonstrated that Bacillus amyloliquefaciens spores can be incorporated into PET fibres during extrusion. However, the extent to which they can be incorporated without fundamentally changing the properties of the fibres is unknown. In this work, scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical microscopy (OM), differential scanning calorimetry (DSC), a Favimat tensile tester, and Raman and Fourier transform infrared spectroscopy (FT-IR) were used to study the properties of PET/spore fibres. The tensile strength, Young’s modulus and elongation at break were dependent on the spore concentration. Additionally the degree of crystallinity increased slightly, whereas the melting and crystallisation temperatures remained constant at all spore concentration levels. Nevertheless the properties of the fibres fall within the acceptable range of variation and are found to be as good as normal PET fibres.
PL
Biorąc pod uwagę zapotrzebowanie na tekstylia o polepszonych właściwościach i nowych właściwościach funkcyjnych prowadzone są ciągłe badania nad modyfikacyjny z polietylenu tereftalanowego (PET). W naszej poprzedniej pracy wykazaliśmy,ze zarodniki Bacillus amylliquefaciens można wprowadzić do włókien PET w czasie ich wytłaczania. Teraz badano w jakiej ilości zarodniki te można wprowadzić do włókien bez fundamentalnej zmiany ich właściwości. W pracy stosowano mikroskopie optyczna, SEM, TEEM jak również różnicową kalorymetrie skaningową (DSC), spektroskopię FTIR oraz Ramana oraz badania wytrzymałościowe. Stwierdzono,ze wytrzymałość na rozciąganie, moduł Younga oraz wydłużenie przy zerwaniu zależą od stężenia zarodników we włóknie. Dodatkowo stwierdzono, że stopień krystaliczności lekko wzrasta, podczas gdy temperatura topnienia i krystalizacji pozostają stałe przy wszystkich stosowanych stężeniach zarodników. Badania pozwoliły stwierdzić,ze właściwości włókien z zarodnikami są w granicach akceptowalnych zmian normalnych włókien PET.
Rocznik
Strony
29--36
Opis fizyczny
Bibliogr. 40 poz., rys., wykr., tab.
Twórcy
autor
  • Belgium, Gent, Ghent University, Faculty of Engineering and Architecture, Department of Textiles
autor
  • Belgium, Gent, Ghent University, Faculty of Science, Department of Biology
autor
  • Belgium, Ronse, Devan Chemicals,
autor
  • The Netherlands, Noordwijk,, ESA Advanced Concepts Team, ESTEC,
  • Belgium, Gent, Ghent University, Faculty of Engineering and Architecture, Department of Textiles
autor
autor
  • Belgium, Gent, Ghent University, Faculty of Engineering and Architecture, Department of Textiles
Bibliografia
  • 1. Oerlikon. The fiber year 2009/10. A world survey on textile and nonwovens industry. Volume 9, Remscheid, Oerlikon textile GmbH & CO. KG., 2010.
  • 2. Broda J, Gawlowski A, Fabia J, Slusarczyk C. Super-molecular Structure of Polypropylene Fibers Modified by Additives. Fibers and Textiles in Eastern Europe 2007; 15, 5-6: 30 - 33.
  • 3. Gashti M, Moradian S. Effect of Nanoclay Type on Dye-ability of Polyethylene Terephthalate/Clay Nanocomposites. Journal of Applied Polymer Science 2012; 125: 4109 - 4120.
  • 4. Zeng X, Lin D, Cai X, Zhang X, Tan S, Xu Y. Morphology and Thermal and Mechanical Properties of Phosphonium Vermiculite Filled Poly(ethylene terephthalate) Composites. Journal of Applied Polymer Science 2012; 126: 601 - 607.
  • 5. Gao Y, Cranston R. Recent Advances in Antimicrobial Treatments of Textiles. Text Res J 2008; 78: 60 - 72.
  • 6. Ristić T, Zemljič L, Novak M, Kunčič M, Sonjak S, Cimerman N, Strnad S. Antimicrobial efficiency of functionalized cellulose fibers as potential medical textiles. Science against microbial pathogens: communicating current research and technological advances 2011; 6: 36 - 51.
  • 7. Bang H, Kim H, Jin F, Woo J, Park S. Conjugate Spun of Polyethylene Terephthalate Resin Modified with 1,4-Cyclohexanedimethanol. Bulletin of the Korean Chemical Society 2011; 32: 542 - 546.
  • 8. Park S, Kim H, Jin F, Park S. Particle Dispensability Improvement of Polyester Fibers with a New Line Injection. Bulletin of the Korean Chemical Society 2010; 31: 2637 - 2643.
  • 9. Leskovšek M, Jedrinović G, Stankovič Elesini U. Properties of polypropylene fibers with incorporated microcapsules. Acta Chimica Slovenica 2004; 51: 699 - 715.
  • 10. Vihodceva S, Kukle S, Barloti J. Nanolevel Functionalization of Natural Fiber Textiles. IOP Conf. Series: Materials Science and Engineering 2011; 23: 012037.
  • 11. Son W, Youk J, Park W. Antimicrobial Cellulose Acetate Nanofibers Containing Silver Nanoparticles, Carbohydr. Polymer 2006; 65: 430–434.
  • 12. Kusuktham B. Spinning of poly (ethylene terephthalate) fibers incorporated with modified calcium silicate. Journal of applied polymer science 2012; 124: 699 - 705.
  • 13. Hong K, Park J, Sul I, Youk J, Kang T. Preparation of Antimicrobial Poly(vinyl alcohol) Nanofibers Containing Silver Nanoparticles. Journal of Polymer Science Part B: Polymer Physics 2006; 44: 2468 - 2474.
  • 14. Williams J, HaloSource V, Cho U. Antimicrobial Functions for Synthetic Fibers: Recent Developments. American Association of Textiles Chemists and Colorists Review 2005; 5: 17 - 21.
  • 15. Deshmukh S, Rao A, Gaval V, Seena J, Mahanwar P. Effect of Particle Size and Concentration on Mechanical and Electrical Properties of the Mica Filled PVC. Journal of Minerals & Materials Characterization & Engineering 2010; 9: 831 - 844.
  • 16. Šupova M. Problem of hydroxyapatite dispersion in polymer matrices: a review. Journal of Materials Science: Materials in Medicine 2009; 20: 1201 - 1213.
  • 17. Onuegbu G, Igwe I. The effects of filler contents and particle sizes on the mechanical and end-use properties of Snail shell powder filled Polypropylene. Materials science and Application 2011; 2: 811 - 817.
  • 18. Bhowmik R, Katti K, Katti D. Influence of Mineral on the Load Deformation Behavior of Polymer in HydroxyapatitePolyacrylic Acid. Journal of Nanoscience and Nanotechnology 2008; 8: 2075 - 2084.
  • 19. Arencón D, Velasco J. Fracture Toughness of Polypropylene-Based Particulate Composites. Materials 2009; 2: 2046 - 2094.
  • 20. Dubnikov I, Berezina S, Antonov A. Effects of rigid particle size on the toughness of filled polypropylene. Journal of Applied Polymer Science 2004; 94: 1917 - 1926.
  • 21. Shao-Yun F, Xi-Qiao F, Bernd L, YiuWing M. Effects of particle size, particle/ matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites: Part B. 2008; 39: 933 - 961.
  • 22. Shumigin D, Tarasova E, krumme A, Meier P. Rheological and Mechanical Properties of Poly(lactic) Acid/Cellulose and LDPE/Cellulose Composites. Materials Science (Medžiagotyra) 2011; 17: 32 - 37.
  • 23. Juhee A, Balasubramaniam V. Physiological Responses of Bacillus amyloliquefaciens Spores to High Pressure. Journal of Microbiology and Biotechnology 2007; 17: 524 - 529.
  • 24. Margosch D, Gänzle M, Ehrmann M, Vogel R. Pressure inactivation of Bacillus endospores. Applied and Environmental Microbiology 2004; 70: 7321 - 7328.
  • 25. Ciera L, Beladjal L, Almeras X, Mertens J, Gheysens T, Nierstrasz V, Langenhove L. Resistance of Bacillus amyloliquefaciens spores as a function of melt extrusion process parameters. Textile & Fibers in Eastern Europe 2014; 22, 2, 104: 102-107.
  • 26. Litchfield D, Baird D. The role of nanoclay in the generation of poly(ethylene terephthalate) fibers with improved modulus and tenacity. Polymer 2008; 49: 5027 - 5036.
  • 27. Zi-Kang Z, Yong Y, Jie Y, Zong-Neng Q. Preparation and Properties of Organ soluble Polyimide/Silica Hybrid Materials by Sol–Gel Process. Journal of Applied Polymer Science 1999; 73: 2977 - 2984.
  • 28. Li G, Helms J, Pang S, Schulz K. Analytical modeling of tensile strength of particulate filled composites. Polymer Composites 2001; 22: 593 - 603.
  • 29. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J. Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 2001; 42: 8759 - 68.
  • 30. Wiencek K, Klapes N, Forgrding P. Hydrophobicity of Bacillus and Clostridium spores. Applied Environmental Microbiology 1990; 56: 2600 - 2605.
  • 31. Furukawa S, Narisawa N, Watanabe T, Kawarai T, Myozen K, Okazaki S, Ogihara H, Yamasaki M. Formation of the spore clumps during heat treatment increases the heat resistances of bacterial spores. International Journal Food Science and Technology 2005; 102: 107 - 111.
  • 32. Boesel L, Reis R. A review on the polymer properties of Hydrophilic, partially Degradable and Bioactive acrylic Cements (HDBC). Progress in Polymer Science 2008; 33: 180 - 190.
  • 33. Espigares I, Elvira C, Mano J, Vazquez B, San Roman J, Reis R. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 2003; 23: 1883 - 1895.
  • 34. Zupin Z, Dimitrovski K. Mechanical Properties of Fabrics Made from Cotton and Biodegradable Yarns Bamboo, SPF, PLA in Weft. ISBN: 978-953-307- 194-7, 2010. http://cdn.intechweb.org/ pdfs/12238.pdf
  • 35. Lee J, Yeea A. Fracture of glass bead/ epoxy composites: on micro-mechanical Deformations. Polymer 2000; 41: 8363– 8373.
  • 36. Dubnikova I, Berezina S, Antonov A. Effect of Rigid Particle Size on the Toughness of Filled Polypropylene. Journal of Applied Polymer Science 2004; 94: 1917–1926.
  • 37. Mangesh D, Ravindra D. Polyester Nanocomposite fibers with Antibacterial Properties. Advances in Applied Science Research 2011; 2: 491-502.
  • 38. Chen X, Yu J, Guo S. Structure and Properties of Polypropylene Composites Filled with Magnesium Hy-drixide. Applied Polymer science 2006; 102: 4943- 4951.
  • 39. Yi W, Fei Z, Guan W, Feng C. Preparation and Properties of Polypropylene Filled with Or-gano-Montmorillonite Nanocomposites. Journal of Applied Polymer Science 2006; 100, 4: 2875- 2880.
  • 40. Fan Y, Lou J. Shinozaki D. Microstructure Dependent Properties of Polypropylene-Clay Nanocomposites. Applied Polymer science 2007; 103: 204-210.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cde5c59-6b02-44eb-b825-fe3498a65846
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.