Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hydrolytic bacteria have the ability to convert organic material which is very useful in the bioremediation of biomedical waste. The objective of the study was to investigate the hydrolytic bacterial diversity that has the hydrolase enzyme activity. The medical waste sampling was carried out at Roemani Hospital and KRMT Wongsonegoro Hospital, Semarang Central Java in mid-August 2016. Microbiological and molecular studies, covering isolation and purification, hydrolase productivity tests, and bacterial determination, were conducted at the Tropical Marine Biotechnology Laboratory, Faculty of Fisheries and Science, UNDIP. The 16S rDNA gene sequence analysis was carried out by using the BLAST GeneBank NCBI homology test, while the phylogenetic tree construction was carried out by means of Clustal X software and Phylegenetic analysis using parsimony (PAUP vers 4.0). The test results showed that 26 hydrolytic bacterial isolates were able to produce four types of extracellular hydrolase enzymes. The results of the enzyme production test showed that there were only 2 bacterial isolates capable of producing the four types of enzymes. Microbiological and molecular polyphasic identifications showed that the 2 isolates, R1-17, and R2-6 isolates are closely related to Virgibacillus salarius strain B-11 and Bacillus subtilis strain VITVB1, respectively. Even though there are only 2 isolates capable of producing the 4 types of extracellular enzymes, it seems that hospital biomedical waste is a potential source for obtaining hydrolytic bacteria.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
81--86
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Medical Laboratory Science, Muhammadiyah University, Indonesia
autor
- Marine Science Department, Fisheries and Marine Science Faculty, Diponegoro University, Indonesia
Bibliografia
- 1. Abd El-Salam, M.M. 2010. Hospital waste management in El-Beheira Governorate, Egypt. Journal of Environmental Management, 91(3), 618–29.
- 2. Anitha, J., and Jayraaj, I.A. 2012. Isolation and identification of bacteria in biomedical wastes (BMW). International Journal of Pharmacy and Pharmaceutical Sciences, 4(5), 386–88.
- 3. Baati, H., Amdouni, R., Gharsallah, N., Sghir, A., and Ammar, E. 2010. Isolation and characterization of moderately halophilic bacteria from Tunisian Solar Saltern. Current Microbiology, 60(3), 157–61.
- 4. Babanyara, Y. 2013. Poor medical waste management (MWM) practices and its risks to human health and the environment: A literature review. Int J Environ Ealth Sci Eng, 11(7), 1–8.
- 5. Cammarota, M.C., and Freire, D.M.G. 2006. A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresource Technology, 97(17), 2195–2210.
- 6. Chitnis, V., Chitnis, S., Vaidya, K., Ravikant, S., Patil, S., and Chitnis, D.S. 2004. Bacterial population changes in hospital effluent treatment plant in Central India. Water Research, 38(2), 441–47.
- 7. Colin, V.L., Villegas, L.B., and Abate, C.M. 2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration & Biodegradation, 69(April), 28–37.
- 8. Dang, H., Zhu, H., Wang, J., and Li, T. 2009. Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World Journal of Microbiology and Biotechnology, 25(1), 71–79.
- 9. Ethica, S.N., Muchlissin, S.I., Saptaningtyas, R., and Sabdono, A. 2017. Sampling mikrobiologii limbah biomedis rumah sakit di kota Semarang Jawa Tengah. In: Prosiding Seminar Nasional & Internasional,. Vol. 1.
- 10. Ethica, S.N., Muchlissin, S.I., Saptaningtyas, R., and Sabdono, A. 2018. Protease producers predominate cultivable hydrolytic bacteria isolated from liquid biomedical waste. Asian Journal of Chemistry, 30(9), 2035–2038.
- 11. Ethica, S.N., and Sabdono, A. 2017. Bio-remediation potential of hydrolytic bacteria isolated from hospital liquid biomedical waste in Central Java. In: Proceedings of the 3rd World Congress on New Technologies (NewTech’17) Rome, Italy, June 6 – 8, 2017, Paper No. ICBB 111.
- 12. Ferreira, A.E., Marchetti, D.P., Oliveira, L.M. De, Gusatti, C.S., Fuentefria, D.B., and Corção, G. 2011. Presence of OXA-23-producing isolates of acinetobacter baumannii in wastewater from hospitals in Southern Brazil. Microbial Drug Resistance, 17(2), 221–27.
- 13. Gagne-Bourgue, F., Aliferis, K.A., Seguin, P., Rani, M., Samson, R., and Jabaji, S. 2013. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum Virgatum L.) cultivars. Journal of Applied Microbiology, 114(3), 836–53.
- 14. Groudieva, T., Kambourova, M., Yusef, H., Royter, M., Grote, R., Trinks, H., and Antranikian, G. 2004. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with arctic sea ice, Spitzbergen. Extremophiles, 8(6), 475–88.
- 15. Li, X., and Yu, Y.H. 2015. Biodiversity and screening of halophilic bacteria with hydrolytic and antimicrobial activities from yuncheng Salt Lake, China. Biologia, 70(2).
- 16. Mwaikono, K.S., Maina, S., Sebastian, A., Kapur, V., and Gwakisa, P. 2015. 16S RRNA amplicons survey revealed unprecedented bacterial community in solid biomedical wastes. American Journal of Microbiological Research, 3(4), 135–43.
- 17. Radha, K., Kalaivani, K., and Lavanya, R. 2009. A case study of biomedical waste management in hospitals. Global Journal of Health Science, 1(1), p. 82.
- 18. Radjasa, O.K., Martens T., Grossart H.-P., Brinkhoff T., Sabdono A., and Simon M. 2007. Antagonistic activity of a marine bacterium pseudoalteromonas luteoviolacea TAB4.2 associated with coral Acropora Sp. Journal of Biological Sciences, 7(2), 239–46.
- 19. Rohban, R., Amoozegar, M.A., and Ventosa, A. 2009. Screening and Isolation of Halophilic Bacteria Producing Extracellular Hydrolyses from Howz Soltan Lake, Iran. Journal of Industrial Microbiology & Biotechnology, 36(3), 333–40.
- 20. Ruginescu, R., Purcărea, C., Dorador, C., Lavin, P., Cojoc, R., Neagu, S., Lucaci, I., and Enache, M. 2019. Exploring the Hydrolytic Potential of Cultured Halophilic Bacteria Isolated from the Atacama Desert. FEMS Microbiology Letters, 366(17).
- 21. Sabdono, A., and Radjasa, O.K. 2008. Phylogenetic diversity of organophosphorous pesticide-degrading coral bacteria from mid-west coast of Indonesia. Biotechnology, 7(4), 694–701.
- 22. Sabdono, A., Radjasa, K., Stöhr, R., and Zocchi, E. 2005. Diversity of culturable bacterial community associated with the coral galaxea fascicularis from ujung kulon, Indonesia. Journal of Coastal Development, 9(1), 36–42.
- 23. Sanchez-Porro, C., Martin, S., Mellado, E., and Ventosa, A. 2003. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. Journal of Applied Microbiology, 94(2), 295–300.
- 24. Sarjito, Radjasa, O.K., Sabdono, A., Prayitno, S.B., and Hutabarat, S. 2008. Phylogenetic diversity of the causative agents of vibriosis associated with groupers fish from Karimunjawa Islands, Indonesia. Current Research in Bacteriology, 2(1), 14–21.
- 25. Shiferaw, Y., Abebe, T., and Mihret, A. 2012. Sharps injuries and exposure to blood and bloodstained body fluids involving medical waste handlers. Waste Management & Research, 30(12), 1299–1305.
- 26. Sorokin, D.Y., Kolganova, T.V., Khijniak, T.V., Jones, B.E., and Kublanov, I.V. 2017. Diversity of cultivated aerobic poly-hydrolytic bacteria in saline alkaline soils. PeerJ, 5(September), e3796.
- 27. Swofford, D.L. 1998. Phylogenetic Analysis Using Parsimony. Version 4. Sunderland, Massachusetts: Sinauer Associates.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cdb7d42-383c-4178-829d-1bf987c6ef74