PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrodynamic and seismic response to teleseismic waves of strong remote earthquakes in Caucasus

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper was to analyze the hydroseismic response of water level in boreholes during the passage of wave trains of remote strong earthquakes and the pattern of local seismic events, dynamically triggered by these earthquakes. As the exact type of forcing (certain phase of wave train) can be identified, the interpretation of hydroseismic effects is more straightforward and could render new important information on hydroseismic processes and, possibly, on the local stress state in a given block of the Earth crust. We tried to find out which parameter of the teleseismic wave dominates the hydroseismic response (susceptibility)—epicentral distance or velocity.
Czasopismo
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • M. Nodia Institute of Geophysics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
  • M. Nodia Institute of Geophysics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
  • M. Nodia Institute of Geophysics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
autor
  • Ilia State University, Tbilisi, Georgia
  • Ilia State University, Tbilisi, Georgia
  • M. Nodia Institute of Geophysics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
Bibliografia
  • 1. Batzle M, Han D-H, Hofmann R (2006) Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics 71(1):1–9.
  • 2. Biot MA (1962) Mechanics of deformation and acoustic propagation in porous media. J Appl Phys 33:1482–1498
  • 3. Bormann P (ed) (2012) New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI, GFZ German Research Centre for Geosciences, Potsdam. http://nmsop.gfz-potsdam.de
  • 4. Brodsky E, Roeloffs E, Woodcock D, Gall I, Manga M (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J Geophys Res. https://doi.org/10.1029/2002JB002321
  • 5. Castro R, Gonzales-Huizar H, Wong V, Velasco A, Zuniga F (2015) Delayed dynamic triggered seismicity in northern Baja California, México caused by large and remote earthquakes. Bull Seismol Soc Am. https://doi.org/10.1785/0120140310
  • 6. Chao K, Peng Z, Wu C, Tang C-C, Lin C-H (2012) Remote triggering of non-volcanic tremor around Taiwan. Geophys J Int 188:301–324. https://doi.org/10.1111/j.1365-246X.2011.05261.x
  • 7. Chao K, Peng Z, Gonzalez-Huizar H, Aiken Ch, Enescu B, Kao H, Velasco A, Obara K, Matsuzawa T (2013) A global search for triggered tremor following the 2011 Mw 9.0 Tohoku earthquake. Bull Seismol Soc Am 103(2B):1551–1571
  • 8. Chelidze T, Matcharashvili T, Lursmanashvili O, Varamashvili N, Zhukova N, Meparidze E (2010) Triggering and synchronization of stick-slip: experiments on spring-slider system. In: de Rubeis V et al (eds) Synchronization and Triggering: from Fracture to Earthquake Process. Springer, Heidelberg, pp 123–165
  • 9. Chelidze T (2016) Underground water level/temperature response to seismic/tectonic transients: effects of poroelasticity. J Georgian Geophys Soc 19A:49–57
  • 10. Chelidze T, Shengelia I, Zhukova N, Matcharashvili T, Melikadze G, Kobzev G (2016) M9 Tohoku earthquake hydro- and seismic response in the Caucasus and North Turkey. Acta Geophys. https://doi.org/10.1515/acgeo-2016-0022
  • 11. Costain J, Bollinger J (2010) Review: research results in hydroseismicity from 1987 to 2009. Bull Seismol Soc Am 100:1841–1858. https://doi.org/10.1785/0120090288
  • 12. Dvorkin J, Nur A (1993) Dynamic poroelasticity: a unified model with the squirt and the Biot mechanisms. Geophysics 58:524–533
  • 13. Gamkrelidze I, Giorgobiani T, Kuloshvili S, Lobzhanidze G, Shengelaia G (1998) Active deep faults map and catalogue for the territory of Georgia. Bull Georgian Acad Sci 157(1):80–85
  • 14. Gonzalez-Huizar H, Velasco A, Peng Zh, Castro R (2012) Remote triggered seismicity caused by the 2011, M9.0 Tohoku-Oki Japan earthquake. Geophys Res Lett. https://doi.org/10.1029/2012GL051015
  • 15. Gueguen Y, Bouteca M (2004) Mechanics of fluid-saturated rocks. Elsevier, Amsterdam
  • 16. Hill D (2015) On the sensitivity of transtensional versus transpressional tectonic regimes to remote dynamic triggering by coulomb failure. Bull Seismol Soc Am 105:339–1348
  • 17. Hill D, Prejean S (2009) Dynamic triggering. In: Kanamori H (ed) Earthquake seismology. Elsevier, Amsterdam, pp 257–293
  • 18. Hill D, Peng Zh, Shelly D, Aiken Ch (2013) S-Wave Triggering of Tremor beneath the Parkfield, California, Section of the San Andreas Fault by the 2011 Tohoku, Japan, Earthquake: observations and Theory. Bull Seismol Soc Am 103:1541–1550
  • 19. Jiang T, Peng Z, Wang W, Chen Q-F (2010) Remotely triggered seismicity in continental China following the 2008 Mw 7.9 Wenchuan earthquake. Bull Seismol Soc Am. https://doi.org/10.1785/0120090286
  • 20. Kane DL, Kilb D, Berg AS, Martynov VG (2007) Quantifying the remote triggering capabilities of large earthquakes using data from the ANZA seismic network catalog (southern California). J Geophys Res. https://doi.org/10.1029/2006JB004714
  • 21. Ma Y, Huang F (2017) Coseismic water level changes induced by two distant earthquakes in multiple wells of the Chinese mainland. Tectonophysics 694:57–68
  • 22. Parsons T, Segou M, Marzocchi W (2014) The global aftershock zone. Tectonophysics 18:1–3
  • 23. Peng Zh, Hill D, Shelly D, Aiken Ch (2010a) Remotely triggered microearthquakes and tremor in central California
  • 24. Peng Zh, Wang W, Chen Q-F, Jiang T (2010) Remotely triggered seismicity in north China following the 2008 Mw 7.9 Wenchuan earthquake. Earth Planets Space 62:893–898
  • 25. Peng Zh, Wu C, Aiken C (2011) Delayed triggering of microearthquakes by multiple surface waves circling the earth. Geophys Res Lett. https://doi.org/10.1029/2010GL046373
  • 26. Pfohl A, Warren LM, Sit S, Brudzinski M (2015) Search for tectonic tremor on the central North Anatolian Fault. Turk Bull Seism Soc Am 105:1779–1786
  • 27. Pimienta L, Fortin J, Borgomano J, Gueguen Y (2016) Dispersions and attenuations in a fully saturated sandstone: experimental evidence for fluid flows at different scales. Lead Edge 35(6):936–942
  • 28. Prejean S, Hill D (2009) Dynamic triggering of earthquakes. In: Meyers A (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 2600–2621
  • 29. Shapiro S, Rothert E, Rath V, Rindschwentner J (2002) Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics 67(1):212–220
  • 30. Van der Elst N, Brodsky E (2010) Connecting near and farfield earthquake triggering to dynamic strain. J Geophys Res. https://doi.org/10.1029/2009JB006681
  • 31. Velasco A, Hernandes S, Parsons T, Pankow K (2008) Global ubiquity of dynamic earthquake triggering. Nat Geosci 1:375–379
  • 32. Wang C-Y, Manga M (2010) Earthquakes and Water. Springer, Berlin
  • 33. Wang C-Y, Chia Y, Wang P-L, Dreger D (2009) Role of S waves and Love waves in coseismic permeability enhancement. Geophys Res Lett. https://doi.org/10.1029/2009GL037330
  • 34. Wu C, Peng Zh, Wang W, Chen Q-F (2011) Dynamic triggering of shallow earthquakes near Beijing, China. Geophys J Int. https://doi.org/10.1111/j.1365-246x.2011.05002.x
  • 35. Zhang Y, Huang F (2011) Mechanism of different coseismic water-level changes in wells with similar epicentral distances in intermediate field. Bull Seismol Soc Am 101:1531–1541
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cd98a0a-a752-4f87-a97a-d451c1f2ed6a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.