Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nucleate pool boiling is a very efficient transfer regime with low temperature gradients, bounded between two heat flux values and which border transitions to other regimes, this phenomenon is well framed with correlations. Our study aims to clarify the applicability of this regime to liquid hydrogen and to develop reliable correlations for a useful and qualitative agreement. An exhaustive review on the nucleate pool boiling of hydrogen and the limits of this regime, whether are the onset nucleate boiling (ONB) and the critical heat flux (CHF) was made, allowing the collection of more than 1400 points from experimental setups, highlighting a variety of parameters. Five predictive correlations were drawn from the literature, graphical and statistical comparisons were made, two in five reveal acceptable results. After analysis of the experimental data, new correlations were developed and compared with the data collected, convincing results were obtained and discussed. A simple form was expressed for the heat flux (...), shows better predicted values; convincing results of the (CHF) have been found on modified correlation, and the CHF value reaches a maximum of 148×103 W/m² for a reduced pressure at 0.35. A nucleate boiling correlation suitable for hydrogen has been developed.
Czasopismo
Rocznik
Tom
Strony
157--166
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanics, Gaseous Fuels and Environment Laboratory, University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB), El Mnaouer, BP1505, Bir El Djir 31000, Oran, Algeria
Bibliografia
- 1. Aversa R, Petrescu V, Apicella A, Petrescu IT. (2016). The basic elements of life’s. Am J Eng Appl Sci, Vol. 9; pp.1189-97
- 2. McCarty RD, Hord J, Roder HM. (1981). NBS Monograph: Selected Properties of Hydrogen
- 3. Smith PM. (2007) The History and Use of Our Earth’s Chemical Elements: A Reference Guide, 2nd Edition (Robert E. Krebs). J Chem Educ, Vol. 84; pp. 1767
- 4. Holladay JD, Hu J, King DL, Wang Y. (2009). An overview of hydrogen production technologies. Catal Today, Vol. 139; pp. 244-60
- 5. Baykara SZ. (2018) Hydrogen: A brief overview on its sources, production and environmental impact. Int J Hydrogen Energy, Vol. 43; pp.10605-14
- 6. Zhou L. (2005). Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev, Vol. 9; pp. 395-408
- 7. Andersson J, Grönkvist S. (2019) Large-scale storage of hydrogen. Int J Hydrogen Energy, Vol. 44; pp. 11901-19
- 8. Eklund G, Von Krusenstierna O. (1983). Storage and transportation of merchant hydrogen. Int J Hydrogen Energy, Vol. 8; pp. 463-70
- 9. Richards RJ, Steward WG, Jacobs RB. (1961). A Survey of the Literature on Heat Transfer from Solid Surfaces to Cryogenic Fluids. Advances
- 10. Seader JD, Miller WS, Kalvinskas LA. (1965). Boiling heat transfer for cryogenics. NASA CR-243
- 11. Brentari EG, Giarratano PJ, Smith R V. (1965). Boiling heat transfer for oxygen, nitrogen, hydrogen, and helium. vol. 4
- 12. Drayer DE. (1965) Nucleate boiling of hydrogen: Comparison between Experimental and Predicted Data. Ind Eng Chem Fundam
- 13. McDougall IR. (1971). The boiling of cryogenic fluids -a survey. Cryogenics (Guildf) Vol. 11; pp. 260-7
- 14. Wang L, Li Y, Zhang F, Xie F, Ma Y. (2016) Correlations for calculating heat transfer of hydrogen pool boiling. Int J Hydrogen Energy, Vol. 41; pp. 17118-31
- 15. Weil L, Lacaze A. (1951). Échanges de chaleur dans l’hydrogène bouillant sous pression atmosphérique. J Phys Le Radium
- 16. Class CR, DeHaan JR, Piccone M, Cost RB. (1960) Boiling Heat Transfer to Liquid Hydrogen from Flat Surfaces. Adv Cryog Eng; pp. 254-61
- 17. Drayer DE, Timmerhaus KD. (1962) An Experimental Investigation of the Individual Boiling and Condensing Heat-Transfer Coefficients for Hydrogen. Adv Cryog Eng
- 18. Sherley JE. (1963). Nucleate Boiling Heat-Transfer Data for Liquid Hydrogen at Standard and Zero Gravity. Adv Cryog Eng, pp. 495-500
- 19. Graham RW, Hendricks RC, Ehlers RC. (1964) An experimental study of the pool heating of liquid hydrogen in the subcritical and supercritical pressure regimes over a range of accelerations. NASA TM X-52039
- 20. Astruc, J.M. (1967). Échanges thermiques superficiels dans le néon, le deutérium et l'hydrogène liquides bouillants en convection libre et flux de chaleur critiques en convection forcée du néon liquide (Doctoral dissertation)
- 21. Coeling, K.J., & Merte Jr, H. (1969). Incipient and nucleate boiling of liquid hydrogen. J. Eng. Ind. May 1969, Vol. 91; No. 2; pp. 513-519
- 22. Merte H. (1970). Incipient and steady boiling of liquid nitrogen and liquid hydrogen under reduced gravity
- 23. Bland ME, Bailey CA, Davey G. (1973) Boiling from metal surfaces immersed in liquid nitrogen and liquid hydrogen. Cryogenics (Guildf), Vol. 13; pp. 651-7
- 24. Bewilogua L, Knöner R, Vinzelberg H. (1975) Heat transfer in cryogenic liquids under pressure. Cryogenics (Guildf), Vol. 15; pp. 121-5
- 25. Kirichenko YA, Kozlov SM, Nozdrin S V. (1990) Heat exchange with boiling hydrogen on the surface of heater of steel 12Kh18N10T. Chem Pet Eng, Vol. 26; pp.417-22
- 26. Kozlov SM, Nozdrin S V. (1992) Heat transfer and boundaries of its regimes during hydrogen boiling at different metallic surfaces. Cryogenics (Guildf)
- 27. Sindt CF. (1995). Heat transfer to slush hydrogen. In Advances in Cryogenic Engineering; Vol. 19; pp. 427-436. Springer, Boston, MA
- 28. Ohira K. (2003) Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen. Heat Transf - Asian Res, Vol. 32; pp. 13-28
- 29. Shirai Y, Tatsumoto H, Shiotsu M, Hata K, KobayashiH, Naruo Y, et al. (2010) Boiling heat transfer from a horizontal flat plate in a pool of liquid hydrogen. Cryogenics (Guildf), Vol. 50; pp. 410-6
- 30. Shiotsu M, Kobayashi H, Takegami T, Shirai Y, Tatsumoto H, Hata K, et al. (2012). Transient heat transfer from a horizontal flat plate in a pool of liquid hydrogen. AIP Conf Proc, Vol. 1434; pp. 1059-66
- 31. Tatsumoto H, Shirai Y, Shiotsu M, Naruo Y, Kobayashi H, Inatani Y. (2015) Heat Transfer Characteristics of a Horizontal Wire in Pools of Liquid and Supercritical Hydrogen. J Supercond Nov Magn
- 32. Ohk SM, Chung BJ. (2017) Visualization of CHF varying the Surface Orientation using Non-heating Method. Proceedings of the KNS 2017 Spring Meeting
- 33. Roubeau, P. (1961). Heat exchanges in nitrogen and hydrogen boiling under pressure. 10 p; Proceedings of the 10th international congress of refrigeration; Copenhague (Denmark)
- 34. Hsu YY. (1962) On the size range of active nucleation cavities on a heating surface. J Heat Transfer, Vol. 84; pp. 207-13
- 35. Kutateladze, S.S., (1948). On the Transition to Film Boiling under Natural Convection, Kotloturbostroenie, No. 3, pp. 10-12
- 36. Kruzhilin G.N. (1947). Free-convection transfer of heat from a horizontal plate and boiling liquid. Doklady AN SSSR (Reports of the USSR Academy of Sciences), Vol. 58; No. 8; pp. 1657-1660
- 37. Mc Nelly M. J. A correlation of rates of heat transfer to nucleate boiling of liquids. J. Imperial
- 38. Labuntsov D.A. (1972) Heat transfer problems with nucleate boiling of liquids, Therm. Eng. Vol. 19; No. 9; pp. 21-28
- 39. Stephan K, Abdelsalam M. (1980) Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transf, Vol. 23; pp. 73-87
- 40. Shekriladze IG. (2008) Boiling Heat Transfer: Mechanisms, Models, Correlations and the Lines of Further Research. Open Mech Eng J, Vol. 2; pp. 104-27.
- 41. NIST Chemistry Webbook, NIST standard reference database number 69, October 2011 release
- 42. McCarty RD, Hord J, Roder HM. (1981) Selected Properties of Hydrogen (Engineering Design Data)
- 43. Liu D, Lee PS, Garimella SV. (2005). Prediction of the onset of nucleate boiling in microchannel flow. Int J Heat Mass Transf, Vol. 48; pp. 5134-49
- 44. Touhami B, Abdelkader A, Mohamed T. (2014). Proposal for a correlation raising the impact of the external diameter of a horizontal tube during pool boiling. Int J Therm Sci, Vol. 84; pp. 293-299
- 45. Hoge HJ, Brickwedde FG. (1942) Rate of heat transfer from a horizontal heated copper tube in boiling liquid hydrogen or oxygen. private communication 1942
- 46. Weil L. (1951) Heat transfer coefficients of boiling liquified gases. In Proc. Intern. Congr. Refrig., 8th, London. Comite Congres Intern. du Froid Paris 1951
- 47. Mulford RN, Nigon JP. (1952) Heat exchange between a copper surface and liquid hydrogen and nitrogen (No. LA-1416). Los Alamos Scientific Lab. 1952
- 48. Class CR, DeHaan JR, Piccone M, Cost RB (1958). Pool boiling heat transfer to a cryogenic liquid. WADC Tech. Rept. Vol. 58; pp. 528
- 49. Malkov MP, Zeldovitch AG, Fradkov AB, Danilov IB. (1959). Industrial separation of deuterium by low-temperature distillation (No. A/CONF. 15/P/2323). USSR. 1959
- 50. Timmerhaus KD, Drayer DE, Dean JW. (1961). An Experimental Investigation of Overall Heat Transfer Coefficients for Condensing and Boiling Hydrogen Films. In Int. Heat Transfer Conf., Boulder (Colo.) Vol. 28
- 51. O'Hanlon TW. (1962) Zero-g Report, LH2 Nucleate Boiling, General Dynamics/Astronautics Report 5SD859-1, 1962
- 52. Kouling K, Mert G. (1969) Nucleate boiling and its onset in liquid hydrogen. Konstruirovanie Tekhn. Mashinostroeniya, Vol. 91; No. 2; pp. 237-242
- 53. Clark D.A. (1971). Cryogenic heat transfer, in Uspekhi Teploperedachi, W.M. Rohsenow and J.P. Hartnet, Eds. Moscow: Mir Press 1971; pp. 361-367
- 54. Grigoriev VA, Pavlov YM, Ametistov EV. (1973). Boiling of Cryogenic Liquids. Moscow: Energia Press
- 55. Kirichenko IA, Levchenko NM, Kozlov SM. (1977). Heat release during boiling of hydrogen in a large volume. Teploenergetika, Vol. 60; pp. 63
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cd33147-0eb8-4a6a-9c3e-e1dfebf0a276