PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploration of a model thermoacoustic turbogenerator with a bidirectional turbine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The utilisation of the thermal emissions of modern ship power plants requires the development and implementation of essentially new methods of using low-temperature waste heat. Thermoacoustic technologies are able to effectively use lowtemperature and cryogenic heat resources with a potential difference of 500–111 K. Thermoacoustic heat machines (TAHMs) are characterised by high reliability, simplicity and environmental safety. The wide implementation of thermoacoustic energy-saving systems is hampered by the low specific power and the difficulties of directly producing mechanical work. An efficient approach to converting acoustic energy into mechanical work entails the utilisation of axial pulse bidirectional turbines within thermoacoustic heat engines. These thermoacoustic turbogenerators represent comprehensive systems that consist of thermoacoustic primary movers with an electric generator actuated by an axial-pulse bidirectional turbine. The development of such a thermoacoustic turbogenerator requires several fundamental issues to be solved. For this purpose, a suitable experimental setup and a 3D computational fluid dynamics (CFD) model of a thermoacoustic engine (TAE) with bidirectional turbines were created. The research program involved conducting physical experiments and the CFD modelling of processes in a TAE resonator with an installed bidirectional turbine. The boundary and initial conditions for CFD calculations were based on empirical data. The adequacy of the developed numerical model was substantiated by the results of physical experiments. The CFD results showed that the most significant energy losses in bidirectional turbines are manifested in the output grid of the turbine.
Rocznik
Tom
Strony
102--109
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
  • Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
autor
  • Institute of Maritime, Ho Chi Minh City University of Transport, Viet Nam
Bibliografia
  • 1. N. Olmer, B. Comer, B. Roy, X. Mao, and D. Rutherford, “Greenhouse gas emissions from global shipping.” [Online]. Available: https://theicct.org/wp-content/uploads/2021/06/ Global-shipping-GHG-emissions-2013-2015_ICCTReport_17102017_vF.pdf. [Accessed: Oct. 15, 2023].
  • 2. International Maritime Organization, “Initial IMO GHG strategy.” [Online]. Available: https://www.imo.org/en/ MediaCentre/HotTopics/Pages/Reducing-greenhouse-gasemissions-from-ships.aspx. [Accessed: Oct. 15, 2023].
  • 3. International Maritime Organization, “Note by the International Maritime Organization to the UNFCCC Talanoa Dialogue.” [Online]. Available: https://unfccc.int/ sites/default/files/resource/250_ IMO%20submission_ Talanoa%20Dialogue_April%202018.pdf. [Accessed: Oct. 15, 2023].
  • 4. International Maritime Organization, “IMO. Low carbon shipping and air pollution control.” [Online]. Available: http:// www.imo.org/en/MediaCentre/HotTopics/GHG/Pages/ default.aspx. [Accessed: Oct. 15, 2023].
  • 5. International Maritime Organization, “Fourth IMO GHG study 2020 executive-summary.” [Online]. Available: https:// wwwcdn.imo.org/localresources/en/OurWork/Environment/ Documents/ Fourth%20IMO%20GHG%20Study%20 2020%20Executive-Summary.pdf. [Accessed: Oct. 15, 2023].
  • 6. Finnish Marine Industries, “Journey to a carbon-free world: Introducing the NYK SUPER ECO SHIP 2050.” [Online]. Available: https://meriteollisuus.teknologiateollisuus.fi/en / ajankohtaista/news/journey-carbon-free-world-introducingnyk-super-eco-ship-2050. [Accessed: Oct. 15, 2023].
  • 7. H. Shi, Q. Zhang, M. Liu, K. Yang, and J. Yuan, “Numerical Study of the Ejection Cooling Mechanism of Ventilation for a Marine Gas Turbine Enclosure,” Polish Maritime Research, Vol. 29, No. 3, pp. 119–127, 2022, doi: org/10.2478/ pomr-2022-0032.
  • 8. T. Niksa-Rynkiewicz, A. Witkowska, J. Głuch, and M. Adamowicz, “Monitoring the Gas Turbine Start-Up Phase on a Platform Using a Hierarchical Model Based on Multi-Layer Perceptron Networks,” Polish Maritime Research, Vol. 29, No. 4, pp. 123–131, 2022, doi: 10.2478/ pomr-2022-0050.
  • 9. E.-L. Tsougranis and D. Wu, “A feasibility study of organic Rankine cycle (ORC) power generation using thermal and cryogenic waste energy on board an LNG passenger vessel,” International Journal of Energy Research, Vol. 42, No. 9, pp. 3121–3142, July 2018, doi: 10.1002/er.4047.
  • 10. M. E. Mondejar, J. G. Andreasen, L. Pierobon, U. Larsen, M. Thern, and F. Haglind, “A review of the use of organic Rankine cycle power systems for maritime applications,” Renewable and Sustainable Energy Reviews, Vol. 91, pp. 126– 151, 2018, doi: 10.1016/j.rser.2018.03.074.
  • 11. T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Applied Energy, Vol. 231. 2018, doi: 10.1016/j.apenergy.2018.09.022.
  • 12. O. Cherednichenko, S. Serbin, and M. Dzida, “Application of thermo-chemical technologies for conversion of associated gas in diesel-gas turbine installations for oil and gas floating units,” Polish Maritime Research, Vol. 26, No. 3, pp. 181–187, Sep. 2019, doi: 10.2478/pomr-2019-0059.
  • 13. G. W. Swift, “Thermoacoustic engines,” J. Acoust. Soc. Am., Vol. 84, No. 4, pp. 1145–1180, 1988.
  • 14. G. W. Swift, “Thermoacoustics: A unifying perspective for some engines and refrigerators,” Acoust. Soc. Am., 2002. ISBN 0-7354-0065-2.
  • 15. L. M. Qi, P. Lou, K. Wang, et al., “Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen,” Chin. Sci. Bull., Vol. 58, pp. 1325-1330, 2013, doi: 10.1007/s11434-012-5214-z.
  • 16. Z. Yang, V. Korobko, M. Radchenko, and R. Radchenko, “Improving thermoacoustic low-temperature heat recovery systems,” Sustainability (Switzerland), Vol. 14, No. 19, art. No. 12306, 2022, doi: 10.3390/su141912306.
  • 17. T. K. Das, P. Halder, and A. Samad, “Optimal design of air turbines for oscillating water column wave energy systems: A review,” Int. J. Ocean Clim. Syst., Vol. 8, No. 1, pp. 37–49, 2017, doi: 10.1177/1759313117693639.
  • 18. A. F. O. Falcao and J. C. C. Henriques, “Oscillating-watercolumn wave energy converters and air turbines: A review,” Renewable Energy, 2015, doi: 10.1016/j.renene.2015.07.086.
  • 19. A. Thakker and F. Hourigan, “Modeling and scaling of the impulse turbine for wave power applications,” Renewable Energy, Vol. 29, No. 3, pp. 305–317, 2004, doi: 10.1016/ S0960-1481(03)00253-2.
  • 20. D. Liu, Y. Chen, W. Dai, et al., “Acoustic characteristics of bi-directional turbines for thermoacoustic generators,” Front. Energy, Vol. 16, pp. 1027–1036, 2022, doi: 10.1007/ s11708-020-0702-3.
  • 21. M. A. Elhawary, A. H. Ibrahim, A. S. Sabry, and E. AbdelRahman, “Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion,” Renewable Energy, 2020, doi: 10.1016/j. renene.2020.05.162.
  • 22. C. Iniesta, J. L. Olazagoitia, J. Vinolas, and J. Aranceta, “Review of travelling-wave thermoacoustic electric-generator technology,” in Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, doi: 10.1177/0957650918760627.
  • 23. Y. Kondratenko, S. Serbin, V. Korobko, and O. Korobko, “Optimisation of bi-directional pulse turbine for waste heat utilization plant based on green IT paradigm,” Studies in Systems, Decision and Control, Vol. 171, pp. 469–485, 2019, doi: 10.1007/978-3-030-00253-4_20.
  • 24. T. Kloprogge, “Turbine design for thermo-acoustic generator,” Master’s thesis, Aeronautical Engineering, Hogeschool. Holland Delft, 2012. Available: https://bioenergyforumfact. org/sites/default/files/2018-06/5.%20Turbine%20 Design %20for%20a%20Thermo-acoustic%20Generator.pdf. [Accessed: Oct. 15, 2023].
  • 25. Y. Kondratenko, O. Korobko, and V. Korobko, “Microprocessor system for thermoacoustic plants efficiency analysis based on a two-sensor method,” Sensors & Transducers, Vol. 24, Aug. 2013. Available: https://www.academia.edu/95466184/ Microprocessor_System_for_Thermoacoustic_Plants_ Efficiency_Analysis_Based_on_a_Two_Sensor_Method. [Accessed: Oct. 15, 2023].
  • 26. ANSYS, Inc., ANSYS Fluent Theory Guide. ANSYS, Inc., 2013.
  • 27. S. I. Serbin, I. B. Matveev, and G. B. Mostipanenko, “Plasmaassisted reforming of natural gas for GTL: Part II - Modeling of the methane-oxygen reformer,” IEEE Trans. Plasma Sci., Vol. 43, No. 12, pp. 3964–3968, 2015, doi: 10.1109/ TPS.2015.2438174.
  • 28. I. Matveev, S. Serbin, T. Butcher, and N. K. Tutu, “Flow structure investigations in a Tornado combustor,” in 4th International Energy Conversion Engineering Conference, AIAA2006-4141, Vol. 2, 2006, pp. 1001–1013, doi: 10.2514/6.2006-4141.
  • 29. O. Cherednichenko, S. Serbin, and M. Dzida, “Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products,” Polish Maritime Research, Vol. 26, No. 4, pp. 149–156, 2020, doi: 10.2478/pomr-2019-0077.
  • 30. S. Serbin, K. Burunsuz, M. Dzida, J. Kowalski, and D. Chen, “Investigation of ecological parameters of a gas turbine combustion chamber with steam injection for the floating production, storage, and offloading vessel,” International Journal of Energy and Environmental Engineering, Vol. 13, No. 3, pp. 873–888, 2022, doi: 10.1007/s40095-021-00433-w.
  • 31. I. B. Matveev, N. V. Washchilenko, and S.I. Serbin, “PlasmaAssisted Reforming of Natural Gas for GTL: Part III - Gas Turbine Integrated GTL,” IEEE Trans. Plasma Sci., Vol. 43, No. 12, pp. 3969–3973, 2015, doi: /10.1109/TPS.2015.2464236.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cd07620-1d25-46ca-9a63-453a5bda2f70
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.