PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Combined impact of summer heat waves and coastal upwelling in the Baltic Sea

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Under warming climates, heat waves (HWs) have occurred in increasing intensity in Europe. Also, public interest towards HWs has considerably increased over the last decades. The paper discusses the manifestations of the summer 2014 HW and simultaneously occurring coastal upwelling (CU) events in the Gulf of Finland. Caused by an anticyclonic weather pattern and persisting easterly winds, CUs evolved along the southern coast of the Gulf in four episodes from June to August. Based on data from coastal weather stations, 115 days-long measurements with a Recording Doppler Current Profiler (RDCP) oceanographic complex and sea surface temperature (SST) satellite images, the partly opposing impacts of these events are analysed. Occurring on the background of a marine HW (up to 26°C), the CU-forced SST variations reached about 20 degrees. At the 10 m deep RDCP mooring location, a drop from 21.5 to 2.9°C occurred within 60 hours. Salinity varied between 3.6 and 6.2 and an along-shore coastal jet was observed; the statistically preferred westerly current frequently flowed against the wind. Locally, the cooling effect of the CUs occasionally mitigated the overheating effects by the HWs both in the sea and on the marine-land boundary. However, in the elongated channel-like Gulf of Finland, upwelling at one coast is usually paired with downwelling at the opposite coast, and simultaneously or subsequently occurring HWs and CUs effectively contribute to heat transfer from the atmosphere to the water mass. Rising extremes of HWs and rapid variations by CUs may put the ecosystems under increasing stress.
Czasopismo
Rocznik
Strony
511--524
Opis fizyczny
Bibliogr. 58 poz., mapa, rys., tab., wykr.
Twórcy
  • University of Tartu, Estonian Marine Institute, Mäealuse 14, 12618 Tallinn, Estonia
Bibliografia
  • [1] Alenius, P., Myrberg, K., Nekrasov, A., 1998. The physical oceanography of the Gulf of Finland: a review. Boreal Environ. Res. 3, 97-125.
  • [2] Andrejev, O., Myrberg, K., Alenius, P., Lundberg, P., 2004. Mean circulation and water exchange in the Gulf of Finland — a study based on three-dimensional modelling. Boreal Environ. Res. 9 (1), 1-16.
  • [3] Cheng, L., Abraham, J., Zhu, J., Trenberth, K. E., Fasullo, J., Boyer, T., Locarnini, R., Zhang, B., Yu, F., Wan, L., Chen, X., Song, X., Liu, Y., Mann, M. E., 2020. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37 (2), 137-142. https://doi.org/10.1007/s00376-020-9283-7.
  • [4] Cole, S., Jacobs, P., 2020. NASA, NOAA Analyses Reveal 2019 Second Warmest Year on Record. NASA Press Release 20-003, https://www.nasa.gov/press-release/nasa-noaa-analyses-reveal-2019-second-warmest-year-on-record, (accessed 22 May 2020).
  • [5] Delpeche-Ellmann, N., Mingelaitė, T., Soomere, T., 2017. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland. Baltic Sea. J. Mar. Syst. 171, 21-30, https://doi.org/10.1016/j.jmarsys.2016.10.007.
  • [6] Delpeche-Ellmann, N., Soomere, T., Kudryavtseva, N., 2018. The role of nearshore slope on cross-shore surface transport during a coastal upwelling event in Gulf of Finland. Baltic Sea. Estuar. Coast. Shelf Sci. 209, 123-135, https://doi.org/10.1016/j.ecss.2018.03.018.
  • [7] Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., Mearns, L. O., 2000. Climate extremes: observations, modeling, and impacts. Science 289, 2068-2074.
  • [8] Elken, J., Lehmann, A., Myrberg, K.The BACC II Author Team, 2015. Recent Change − Marine Circulation and Stratification. In: Second Assessment of Climate Change for the Baltic Sea Basin. Springer, Cham, 131-144, https://doi.org/10.1007/978-3-319-16006-1_7.
  • [9] Frich, P., Alexander, L. V., Della-Marta, P., Gleason, B., Haylock, M., Klein Tank, A., Peterson, T., 2002. Global changes in climatic extremes during the 2nd half of the 20th century. Clim. Res. 19, 193-212, https://doi.org/10.3354/cr019193.
  • [10] Gidhagen, L., 1987. Coastal upwelling in the Baltic Sea — satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling. Estuar. Coast. Shelf Sci. 24 (4), 449-462.
  • [11] Gill, A. E., Clarke, A. J., 1974. Wind-induced upwelling, coastal currents and sea-level changes. Deep-Sea Res. 21, 325-345.
  • [12] Haapala, J., 1994. Upwelling and its influence on nutrient concentration in the coastal area of the Hanko Peninsula, entrance of the Gulf of Finland. Estuar. Coast. Shelf Sci. 38 (5), 507-521.
  • [13] Hobday, A. J., Oliver, E. C. J., Sen Gupta, A., Benthhuysen, J. A., Burrow, M. T., Donat, M. G., Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T., Smale, D. A., 2018. Categorizing and naming marine heatwaves. Oceanography 31 (2) 162-173, https://doi.org/10.5670/oceanog.2018.205.
  • [14] Hoegh-Guldberg, O., Bruno, J. F., 2010. The impact of climate change on the World’s marine ecosystems. Science 328, 1523-1528.
  • [15] EWS, 2020. Estonian Weather Service; http://www.ilmateenistus.ee/kliima/weather-events/?lang=en, (accessed 22 May 2020).
  • [16] IPCC 2014. IPCC Fifth Assesment Report (AR5), https://www.ipcc.ch/report/ar5/.
  • [17] Jiang, R., Wang, Y.-S., 2018. Modeling the ecosystem response to summer coastal upwelling in the northern South China Sea. Oceanologia 60 (1) 32-51, https://doi.org/10.1016/j.oceano.2017.05.004.
  • [18] Kallis, A., Loodla, K., Tillmann, E., Krabbi, M., Pärg, R., Vint, K., Jõeveer, A., Juust, E., 2015. Yearbook of Estonian Meteorology 2014. Tallinn, 162 pp., (in Estonian), http://www.ilmateenistus.ee/wp-content/uploads/2016/02/aastaraamat_2014.pdf (Accessed on 22 May 2020).
  • [19] Keevallik, S., Soomere, T., Pärg, R., Žukova, V., 2007. Outlook for wind measurement at Estonian automatic weather stations. Proc. Estonian Acad. Sci.-Eng. 13 (3), 234-251.
  • [20] Keevallik, S., Vint, K., 2015. Temperature extremes and detection of heat and cold waves at three sites in Estonia. Proc. Estonian Acad. Sci. 64 473-479, https://doi.org/10.3176/proc.2015.4.02.
  • [21] Kononen, K., Nõmmann, S., 1992. Spatio-temporal dynamics of the cyanobacterial blooms in the Gulf of Finland, Baltic Sea. In: Carpenter, E. J., Capone, D. G., Rueter, J. G., et al. (Eds.). In: Marine pelagic cyanobacteria: Trichodesmium and other Diazotrophs. NATO ASI Ser., vol. 362. Springer, Dordrecht, 95-113.
  • [22] Kont, A., Jaagus, J., Orviku, K., Palginõmm, V., Ratas, U., Rivis, R., Suursaar, Ü., Tõnisson, H., 2011. Natural development and human activities on Saaremaa Island (Estonia) in the context of climate change and integrated coastal zone management. In: Schernewski, G., Hofstede, J., Neumann, T. (Eds.), Global change and Baltic coastal zones. Springer, Dordrecht 117-134, https://doi.org/10.1007/978-94-007-0400-8_8.
  • [23] Kotta, J., Herkül, K., Jaagus, J., Kaasik, A., Raudsepp, U., Alari, V., et al., 2018. Linking atmospheric, terrestrial and aquatic environments in high latitude: Regime shifts in the Estonian regional climate system for the past 50 years. PLOS ONE 13 (12), art. no. e0209568, https://doi.org/10.1371/journal.pone.0209568.
  • [24] Kowalewski, M., Ostrowski, M., 2005. Coastal up- and downwelling in the southern Baltic. Oceanologia 47 (4), 453-475.
  • [25] Kowalewska-Kalkowska, H., Kowalewski, M., 2019. Combining Satellite Imagery and Numerical Modelling to Study the Occurrence of Warm Upwellings in the Southern Baltic Sea in Winter. Remote Sens. 11 (24), art. no. 2982, https://doi.org/10.3390/rs11242982.
  • [26] Lancaster, J., Lancaster, N., Seely, M. K., 1984. Climate of the central Namib Desert. Madoqua 14 (1), 5-61.
  • [27] Lehmann, A., Myrberg, K., Höflich, K., 2012. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009. Oceanologia 54 (3), 369-393, https://doi.org/10.5697/oc.54-3.369.
  • [28] Lenssen, N. J. L., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin, A., Ruedy, R., Zyss, D., 2019. Improvements in the GIS-TEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307-6326, https://doi.org/10.1029/2018JD029522.
  • [29] Liblik, T., Lips, U., 2019. Stratification has strengthened in the Baltic Sea — an analysis of 35 years of observational data. Front. Earth Sci. 7, art. no. 174, https://doi.org/10.3389/feart.2019.00174.
  • [30] Lips, I., Lips, U., Liblik, T., 2009. Consequences of coastal upwelling events on physical and chemical patterns in the central Gulf of Finland (Baltic Sea). Cont. Shelf Res. 29, 1836-1847, https://doi.org/10.1016/j.csr.2009.06.010.
  • [31] Meier, H. E. M., Dieterich, C., Eilola, K., Gröger, M., Höglund, A., Radtke, H., Saraiva, S., Wåhlström, I., 2019. Future projections of record-breaking sea surface temperature and cyanobacteria bloom events in the Baltic Sea. Ambio 48, 1362-1376, https://doi.org/10.1007/s13280-019-01235-5.
  • [32] Miller, S. T. K., Keim, B. D., Talbot, R. W., Mao, H., 2003. Sea breeze: Structure, forecasting, and impacts. Rev. Geophys. 41 (3), 1-31, https://doi.org/10.1029/2003RG000124.
  • [33] Myrberg, K., Andrejev, O., 2003. Main upwelling regions in the Baltic Sea — a statistical analysis based on three-dimentional modelling. Boreal Environ. Res. 8, 97-112.
  • [34] Oliver, E. C. J., Burrows, M. T., Donat, M. G., Sen Gupta, A., Alexander, L. V., Perkins-Kirkpatrick, S. E., Benthuysen, J. A., Hobday, A. J., Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T., Smale, D. A., 2019. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Front. Mar. Sci. 6, art. no. 734, https://doi.org/10.3389/fmars.2019.00734.
  • [35] Õispuu, T.-M., 2019. Heat waves in Estonia in 1951-2018. In: Järvet, A. (Ed.). Yearbook of Estonian Geographical Society, Vol. 44 Tallinn, 93-110, (in Estonian, English summary), http://egs.ee/wp-content/uploads/2019/12/EGS_Aastaraamat_44kd.pdf, (Accessed May 22, 2020).
  • [36] Paalme, T., Torn, K., Martin, G., Kotta, I., Suursaar, Ü, 2020. Littoral benthic communities under effect of heat wave and upwelling events in NE Baltic Sea. J. Coast. Res., Spec. Issue 95, 133-137. https://doi.org/10.2112/SI95-026.1.
  • [37] Panch, C., Scotti, M., Barboza, F. R., Al-Jaabi, B., Brakel, J., Briski, E., Bucholz, B., Franz, M., Ito, M., Paiva, F., Saha, M., Sawall, Y., Weinberger, F., Wahl, M., 2013. Heat waves and their significance for temperate benthic community: A near-natural experimental approach. Glob. Chang. Biol. 24, 4357-4367, https://doi.org/10.1111/gcb.14282.
  • [38] Perkins, S. E., Alexander, L. V., 2013. On the measurement of heat waves. J. Clim. 26, 4500-4517, https://doi.org/10.1175/JCLI-D-12-00383.1.
  • [39] Rafferty, J. P., 2020. Heat wave. Britannica online: https://www.britannica.com/science/heat-wave-meteorology, (accessed 22 May 2020).
  • [40] Russo, S., Dosio, A., Graversen, R. G., Sillmann, J., Carrao, H., Dunbar, M. B., Singleton, A., Montagna, P., Barbola, P., Vogt, J. V., 2014. Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos. 119 (22), 12,500-12,512, https://doi.org/10.1002/2014JD022098.
  • [41] Russo, S., Sillmann, J., Fischer, E. M., 2015. Top ten heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10, art. no. 124003, https://doi.org/10.1088/1748-9326/10/12/124003.
  • [42] Rutgersson, A., Jaagus, J., Schenk, F., Stendel, M., Bärring, L., Briede, A., Claremar, B., Hanssen-Bauer, I., Holopainen, J., Moberg, A., Nordli, Ø., Rimkus, E., Wibig, J.The BACC II Author Team, 2015. Recent Change − Atmosphere. In: Second Assessment of Climate Change for the Baltic Sea Basin. Springer, Cham, 69-97, https://doi.org/10.1007/978-3-319-16006-1_4.
  • [43] Schlitzer, R., 2020. Ocean Data View, https://odv.awi.de.
  • [44] Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., Appenzeller, C., 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332-336.
  • [45] Shaltout, M., 2019. Recent sea surface temperature trends and future scenarios for the Red Sea. Oceanologia 61 (4), 484-504, https://doi.org/10.1016/j.oceano.2019.05.002.
  • [46] Siegel, H., Gerth, M., 2019. Sea Surface Temperature in the Baltic Sea in 2018. HELCOM Baltic Sea Environment Fact Sheets 2019 https://helcom.fi/baltic-sea-trends/environment-fact-sheets/hydrography/sea-surface-temperature-in-the-baltic-sea-in-2018/, (accessed May 22, 2020).
  • [47] Smid, M., Russo, S., Costa, A. C., Granell, C., Pebesma, E., 2019. Ranking European capitals by exposure to heat waves and cold waves. Urban Clim. 27, 388-402, https://doi.org/10.1016/j.uclim.2018.12.010.
  • [48] Soomere, T., Myrberg, K., Leppäranta, M., Nekrasov, A., 2008. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997-2007. Oceanologia 50 (3), 287-362.
  • [49] Strange, E., Fernando, H., 2001. Entrainment and mixing in stratified shear flows. J. Fluid Mech. 428, 349-386.
  • [50] Suursaar, Ü., Aps, R., 2007. Spatio-temporal variations in hydro-physical and -chemical parameters during a major upwelling event off the southern coast of the Gulf of Finland in summer 2006. Oceanologia 49 (2), 209-228.
  • [51] Suursaar, Ü., 2010. Waves, currents and sea level variations along the Letipea-Sillamäe coastal section of the southern Gulf of Finland. Oceanologia 52 (3), 391-416, https://doi.org/10.5697/oc.52-3.391.
  • [52] Suursaar, Ü., 2013. Locally calibrated wave hindcasts in the Estonian coastal sea in 1966-2011. Est. J. Earth Sci. 62 (1), 42-56, https://doi.org/10.3176/earth.2013.05.
  • [53] Takolander, A., Cabeza, M., Leskinen, E., 2017. Climate change can cause complex responses in Baltic macroalgae: A systematic review. J. Sea Res. 123, 16-26, https://doi.org/10.1016/j.seares.2017.03.007.
  • [54] Talpsepp, L., 2008. On the influence of the sequence of coastal upwellings and downwellings on the surface water salinity in the Gulf of Finland. Estonian J. Eng. 14 (1), 29-41.
  • [55] Uiboupin, R., Laanemets, J., 2009. Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic Sea. Boreal Environ. Res. 14 (2), 297-304.
  • [56] Westerlund, A., Tuomi, L., Alenius, P., Miettunen, E., Vankevich, R. E., 2018. Attributing mean circulation patterns to physical phenomena in the Gulf of Finland. Oceanologia 60 (1), 16-31, https://doi.org/10.1016/j.oceano.2017.05.003.
  • [57] Westerlund, A., Tuomi, L., Alenius, P., Myrberg, K., Miettunen, E., Vankevich, R. E., Hordoir, R., 2019. Circulation patterns in the Gulf of Finland from daily to seasonal timescales. Tellus A 71, art. no. 1627149, https://doi.org/10.1080/16000870.2019.1627149.
  • [58] Wernberg, T., Smale, D. A., Tuya, F., Thomsen, M. S., de Langlois, T. J., Bettignies, T., Bennett, S., Rousseaux, C. S., 2013. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3, 78-82, https://doi.org/10.1098/rspb.2012.2829.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cca420b-af89-489e-b956-45fb69a68bb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.