PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the influence of UV light exposure time on hardness and density properties of SLA models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article analysis the effect of exposure to ultraviolet light on the hardening process of the model made in the SLA technology. Research samples were created with the SLA additive technique using a 10s exposure time. In this experiment, the change in item hardness and density over a 96-hour period was analysed. Light exposure time for details of an item made in SLA technology results in an increase in hardness. At the same time are observed, changes in density and stabilization of both parameters with increasing exposure time to UV light.
Słowa kluczowe
Rocznik
Tom
Strony
175--184
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Department of Materials and Machines Technology, Faculty of Technical Science, University of Warmia and Mazury in Olsztyn
  • Department of Systems Engineering, Faculty of Technical Science, University of Warmia and Mazury in Olsztyn
Bibliografia
  • Anseth K.S., Bowman C.N. 1994. Kinetic Gelation model predictions of crosslinked polymer network microstructure. Chemical Engineering Science, 49(14): 2207-2217, doi:10.1016/0009-2509(94)E0055-U.
  • Bartolo P.J., Gibson I. 2011. Stereolithography: materials, processes and applications. Springer Science & Business Media, doi: 10.1007/978-0-387-92904-0.
  • Redwood B., Scöffer F., Garret B. 2017. The 3D Printing Handbook: Technologies, design and applications. 3D Hubs B.V., Amsterdam.
  • Bociong K., Krasowski M., Szczesio A., Anyszka R., Kalicka K. 2018. Modyfikacja światłoutwardzalnego kompozytu stomatologicznego wybranymi poliedrycznymi oligomerycznymi silseskwioksanami. Polimery, 7-8: 515-523.
  • Boots H.M.J., Pandey R.B. 1984. Qualitative percolation study of free-radical cross-linking polymerization. Polymer Bulletin, 11(5): 415-420, doi: 10.1007/BF00265480.
  • Chantarapanich N., Puttawibul P., Sitthiseripratip K., Sucharitpwatskul S., Chantaweroad S. 2013. Study of the mechanical properties of photo-cured epoxy resin fabricated by stereolithography process. Songklanakarin Journal of Science and Technology, 35(1): 91-98.
  • Cosmi F., Dal Maso A. 2020. A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Materials Today: Proceedings, doi: 10.1016/j.matpr.2020.04.602.
  • Cramer N.B., Bowman C.N. 2001. Kinetics of thiol-ene and thiol-acrylate photopolymerizations with real-time Fourier transform infrared. Journal of Polymer Science, Part A, Polymer Chemistry, 39(19): 3311-3319, doi: 10.1002/pola.1314.
  • Czech Z., Minciel E. 2015. Światłoutwardzalne kompozyty zawierające akrylowane żywice wielofunkcyjne: skrócony przegląd literaturowy. Aparatura Badawcza i Dydaktyczna, 20: 270-275.
  • Davidson C.L., de Gee A.J. 1984. Relaxation of Polymerization Contraction Stresses by Flow in Dental Composites. Journal of Dental Research, 63(2): 146-148, doi: 10.1177/00220345840630021001.
  • Davidson C.L., Feilzer A.J. 1997. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. Journal of Dentistry, 25(6): 435-440, doi: 10.1016/S0300-5712(96)00063-2.
  • Dizon J.R.C., Espera A.H., Chen Q., Advincula R.C. 2018. Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20: 44-67, doi: 10.1016/j.addma.2017.12.002.
  • Dulieu-Barton J.M., Fulton M.C. 2000. Mechanical properties of a typical stereolithography resin. Strain, 36(2): 81-87, doi: 10.1111/j.1475-1305.2000.tb01177.x.
  • Fan P.L., Wozniak W.T., Reyes W.D., Stanford J.W. 1987. Irradiance of visible light-curing units and voltage variation effects. Journal of the American Dental Association, 115(3): 442-445, doi: 10.14219/jada.archive.1987.0252.
  • Ferracane J.L., Mitchem J.C., Condon J.R., Todd R. 1997. Wear and marginal breakdown of composites with various degrees of cure. Journal of Dental Research, 76(8): 1508-1516, doi: 10.1177/00220345970760081401.
  • White Paper - Validating Isotropy in SLA 3D Printing. 2018. Formlabs, Somerville.
  • The Ultimate Guide to Stereolithography (SLA) 3D Printing. 2017. Formlabs Inc. March, 1-23, https://formlabs.com/blog/ultimate-guide-to-stereolithography-sla-3d-printing/.
  • Fuh J.Y.H., Chooo Y.S., Lu L., Nee A.Y.C., Wong Y.S., Wang W.L., Miyazawa T., Ho S.H. 1997. Post-cure shrinkage of photo-sensitive material used in laser lithography process. Journal of Materials Processing Technology, 63(1–3): 887-891, doi: 10.1016/S0924-0136(96)02744-6.
  • Hague R., Mansour S., Saleh N., Harris R. 2004. Materials analysis of stereolithography resins for use in Rapid Manufacturing. Journal of Materials Science, 39(7): 2457-2464, doi: 10.1023/B:JMSC.0000020010.73768.4a.
  • Huang Q., Zhang J., Sabbaghi A., Dasgupta T. 2015. Optimal offline compensation of shape shrinkage for three-dimensional printing processes. IIE Transactions (Institute of Industrial Engineers), 47(5): 431-441, doi: 10.1080/0740817X.2014.955599.
  • Hull C.W. 1998. Method for production of three-dimensional objects by stereolithography. Patent No. 5,762,856, https://patents.google.com/patent/US5444220A/en.
  • Gibson I., Rosen D.W., Stucker B. 2010. Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing. CIRP Encyclopedia of Production Engineering. Springer, doi: 10.1007/978-3-662-53120-4_16866.
  • Jacobs P.F. 1992. Rapid prototyping & manufacturing – Fundamentals of stereolithography. Journal of Manufacturing Systems, 12(5), doi: 10.1016/0278-6125(93)90311-g.
  • Le Xuan H., Decker C. 1993. Photocrosslinking of acrylated natural rubber. Journal of Polymer Science, Part A, Polymer Chemistry, 31(3): 769-780, doi: 10.1002/pola.1993.080310323.
  • Liravi F., Das S., Zhou C. 2015. Separation force analysis and prediction based on cohesive element model for constrained-surface Stereolithography processes. CAD Computer Aided Design, 69: 134–142, doi: 10.1016/j.cad.2015.05.002.
  • Małek E., Miedzińska D., Popławski A., Szymczyk W. 2019. Application of 3D printing technology for mechanical properties study of the photopolymer resin used to print porous structures. Technical Sciences, 2(22): 183-194, doi: 10.31648/ts.4584.
  • Melchels F.P.W., Feijen J., Grijpma D.W. 2010. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24): 6121-6130, doi: 10.1016/j.biomaterials.2010.04.050.
  • Pan Y., He H., Xu J., Feinerman A. 2017. Study of separation force in constrained surface projection stereolithography. Rapid Prototyping Journal, 23(2): 353-361, doi: 10.1108/RPJ-12-2015-0188.
  • Pearson G.J., Longman C.M. 1989. Water sorption and solubility of resin‐based materials following inadequate polymerization by a visible‐light curing system. Journal of Oral Rehabilitation, 16(1): 57-61, doi: 10.1111/j.1365-2842.1989.tb01317.x.
  • Podgórski M., Becka E., Claudino M., Flores A., Shah P.K., Stansbury J.W., Bowman C.N. 2015. Ester-free thiol-ene dental restoratives. Part B. Composite development. Dental Materials, 31(11): 1263-1270, doi: 10.1016/j.dental.2015.08.147.
  • Schmidleithner C., Kalaskar D.M. 2018. Stereolithography. 3D Printing. InTech, doi: 10.5772/intechopen.78147.
  • Shortall A.C., Wilson H.J., Harrington E. 1995. Depth of cure of radiation ‐ activated composite restoratives ‐ Influence of shade and opacity. Journal of Oral Rehabilitation, 22(5): 337-342, doi: 10.1111/j.1365-2842.1995.tb00782.x.
  • Soh M.S., Yap A.U.J. 2004. Influence of curing modes on crosslink density in polymer structures. Journal of Dentistry, 32(4): 321-326, doi: 10.1016/j.jdent.2004.01.012.
  • Sun Q., Rizvi G.M., Bellehumeur C.T., Gu P. 2008. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2): 72-80, doi: 10.1108/13552540810862028.
  • Vargas M.A., Cobb D.S., Schmit J.L. 1998. Polymerization of composite resins: Argon laser vs conventional light. Operative Dentistry, 23(2): 87-93, https://europepmc.org/article/med/9573794.
  • Venhoven B.A.M., de Gee A.J., Davidson C.L. 1993. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials, 14(11): 871-875, doi: 10.1016/0142-9612(93)90010-Y.
  • Wang J., Das S., Rai R., Zhou C. 2018. Data-driven simulation for fast prediction of pull-up process in bottom-up stereo-lithography. CAD Computer Aided Design, 99: 29-42, doi: 10.1016/j.cad.2018.02.002.
  • Zguris Z. 2016. How Mechanical Properties of Stereolithography 3D Prints are Affected by UV Curing. Formlabs White Paper, formlabs.com, https://archive-media.formlabs.com/upload/How-Mechanical-Properties-of-SLA-3D-Prints-Are-Affected-by-UV-Curing.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cc9c68f-efc7-4a34-9328-836843724448
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.