PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Moisture content of peat-moorsh soils with special attention to periods of drought

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the course of variability of the moisture content of the top layers in shallow (45 cm) and medium-deep (90 cm) peat-moorsh soil profiles in the years 2015-2019 against the background of the same meteorological conditions and a similar level of the groundwater table. The relative precipitation index (RPI) classifies the years 2015 and 2016 as dry, 2017 as wet, and 2018 and 2019 as average. For periods of atmospheric droughts, the average daily climatic water balance (CWB) ranged from -5.30 to -1.35 mm∙d-1. The water table did not fall below 90 cm b.g.l. during the entire study period, and the range of its fluctuations was 8 cm greater in the shallow than in the medium-deep profile. The range of moisture at different depths varied significantly and ranged from approx. 6% in periods of drought to about 80% in wet periods. Soil moisture throughout the measurement period was above the plant available water range (pF > 4.2). The occurrence of soil drought in the shallow peat-moorsh soil profile had a range of up to 40 cm, and in the medium-deep profile of up to 30 cm. The sequence of no-precipitation days and the maximum amount of daily evapotranspiration during them determine the possible timing of drought; however, it is the precipitation distribution in individual months, considered in the current CWB values, that ultimately determine the formation of soil water resources at the research site.
Wydawca
Rocznik
Tom
Strony
234--247
Opis fizyczny
Bibliogr. 36 poz., fot., rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Institute of Civil Engineering, Warsaw, Poland
  • Institute of Soil Science and Plant Cultivation – State Research Institute, Puławy, Poland
  • Warsaw University of Life Sciences – SGGW, Institute of Civil Engineering, Warsaw, Poland
  • University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Department of Land Reclamation and Environmental Development, Al. Mickiewicza 21, 31-120 Kraków, Poland
  • Warsaw University of Life Sciences – SGGW, Water Center, Warsaw, Poland
  • Institute of Soil Science and Plant Cultivation – State Research Institute, Puławy, Poland
Bibliografia
  • Al-Kubaisi, Q. and Rasheed, A.A. (2018) “Climatic water balance and hydrological characteristics of Lailan Basin, Southeast Kirkuk – North of Iraq,” Iraqi Journal of Science, 59, 1A, pp. 105–118. Available at: https://doi.org/10.24996/ijs.2018.59.1A.13.
  • Albergel, C. et al. (2012) “Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations,” Remote Sensing of Environment, 118, pp. 215–226. Available at: https://doi.org/10.1016/j.rse.2011.11.017.
  • Allen, L.G. et al. (1998) “Crop evapotranspiration (guidelines for computing crop water requirements),” FAO Irrigation and drainage paper, 56, Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 174. Last updated: February 2006. Available at: http://www.climasouth.eu/sites/default/files/FAO%2056.pdf (Accessed: June 15, 2023).
  • Bajkowski, S. et al. (2022) “Modular regulators of water level in ditches of subirrigation systems,” Sustainability, 14(7), 4103. Available at: https://doi.org/10.3390/su14074103.
  • Bąk, B. and Kubiak-Wójcicka, K. (2017) “Impact of meteorological drought on hydrological drought in Toruń (Central Poland) in the period of 1971–2015,” Journal of Water and Land Development, 32, pp. 3–12. Available at: https://doi.org/10.1515/jwld-2017-0001.
  • Baryła, A. et al. (2019) “Changes in temperature and moisture content of an exten-sive-type green roof,” Sustainability, 11(9), 2498. Available at: https://doi.org/10.3390/su11092498.
  • Brandyk, A. et al. (2021) “Conceptual model of drainage-sub irrigation system functioning-first results from a case study of a lowland valley area in Central Poland,” Sustainability, 13(1), 107. Available at: https://doi.org/10.3390/su13010107.
  • Brocca, L. et al. (2011) “Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe,” Remote Sening of Environment,”. 115, pp. 3390–3408. Available at: https://doi.org/10.1016/j.rse.2011.08.003.
  • Cammalleri, C. et al. (2020) “Diverging hydrological drought traits over Europe with global warming,” Hydrology and Earth System Sciences, 24(12), pp. 5919–5935. Available at: https://doi.org/10.5194/hess-24-5919-2020.
  • Ciężkowski, W. et al. (2018) “Modelling wetland growing season rainfall interception losses based on maximum canopy storage measurements,” Water, 10(1), 41. Available at: https://doi.org/10.3390/w10010041.
  • Csáki, P. et al. (2020) “Multi-model climatic water balance prediction in the Zala River Basin (Hungary) based on a modified Budyko framework,” Journal of Hydroogy and Hydromechanics, 68(2), pp. 200–210. Available at: https://doi.org/10.2478/johh-2020-0016.
  • Delta-T Devices (2016) User manual for the profile probe, type PR2. Burwell: Delta-T Devices Ltd. Available at: https://delta-t.co.uk/wp-content/uploads/2017/02/PR2_user_manual_version_5.0.pdf(Accessed: June 15, 2023).
  • Gąsowska, M. (2017) Wpływ zmian sposobu użytkowania łąk na fizyko-wodne właściwości gleb organicznych na przykładzie obiektu Łąki Soleckie [The influence of change in meodow use on physical-water properties of organic soils. Case study: Łąki Soleckie]. PhD Thesis. Warszawa: SGGW.
  • Gąsowska, M. et al. (2015) “Analiza zmian położenia wód gruntowych i uwilgotnienia na fragmencie systemu nawodnień podsiąkowych w glebie torfowo-murszowej [Analysis of ground water level and moisture changes in the part of sub-irrigation system in peat-moorsh soil],” Infrastruktura i Ekologia Terenów Wiejskich, 3(1), pp. 583–592. Available at: https://doi.org/10.14597/infraeco.2015.3.1.046.
  • Genuchten van, M.Th. (1980) “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Science Society of America Journal, 44, pp. 892–898. Available at: https://doi.org/10.2136/sssaj1980.03615995004400050002x.
  • Hänsel, S. et al. (2019) “Assessing seasonal drought variations and trends over Central Europe,” Advances in Water Resources, 127, pp. 53–75. Available at: https://doi.org/10.1016/j.advwatres.2019.03.005.
  • IUSS Working Group WRB (2022) World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. 4th edn. Vienna, Austria: International Union of Soil Sciences (IUSS). Available at: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (Accessed: June 15, 2023).
  • Jędrejek, A. et al. (2022) “Agricultural drought monitoring system in Poland – farmers’ assessments vs. monitoring results,” Agriculture, 12, 536. Available at: https://doi.org/10.3390/agriculture12040536.
  • Klute, A. (ed.) (1986) “Water retention: Laboratory methods,” in Methods of soil analysis. Part 1: Physical and Mineralogical Methods. Agronomy Series, 9. Madison, WI, USA: ASA and SSSA, pp. 635–662.
  • Lipka, K. et al. (2017) “Disappearance rate of a peatland in Dublany near Lviv (Ukraine) drained in 19th century,” Mires and Peat, 19, 17, pp. 1–15 Available at: https://doi.org/10.19189/MaP.2017.OMB.279.
  • Łabędzki, L. (2006) “Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. An outline of problems and methods of monitoring and classification],” Woda-Środowisko-Obszary Wiejskie. Rozprawy Naukowe i Monografie, 17. Falenty: Wydaw. IMUZ.
  • Łachacz, A. et al. (2023) “Transformation of organic soils due to artificial drainage and agricultural use in Poland,” Agriculture, 13(3), 634. Available at: https://doi.org/10.3390/agriculture13030634.
  • Marcinkowski, P. and Piniewski, M. (2018) “Effect of climate change on sowing and harvest dates of spring barley and maize in Poland,” International Agrophysics, 32, pp. 265–271. Available at: https://doi.org/10.1515/intag-2017-0015.
  • Marsz, A.A. and Styszyńska, A. (2019) “Skala i przyczyny zmian temperatury najcieplejszych miesięcy roku nad obszarem Polski po roku 1988 [The scale and causes of changes in the temperature of the warmest months of the year over the area of Poland after 1988],” in L. Chojnacka-Ożga and H. Lorenc (eds.) Współczesne problemy klimatu Polski [Contemporary problems of climate in Poland]. Warszawa: IMGW-PIB, pp. 9–26.
  • Meza, I. et al. (2020) “Global-scale drought risk assessment for agricultural systems,” Natural Hazards and Earth System Sciences, 20(2), pp. 695–712. Available at: https://doi.org/10.5194/nhess-20-695-2020.
  • Mezghani, A. et al. (2019) “Subsampling impact on the climate change signal over Poland based on simulations from statistical and dynamical downscaling,” Journal od Applied Meteorology and Climatology, 58, pp. 1061–1078. Available at: https://doi.org/10.1175/JAMC-D-18-0179.1.
  • Oleszczuk, R. et al. (2008) “Impacts of agricultural utilization of peat soils on the greenhouse gas balance,” in M. Strack (ed.) Peatlands and climate change. Jyväskylä, Finland: International Peat Society, pp. 70–97.
  • Oleszczuk, R. et al. (2022) “Variation of moisture and soil water retention on a lowland area of Central Poland – Solec site case study,” Atmosphere, 13(9), 1372. Available at: https://doi.org/10.3390/atmos13091372.
  • Oleszczuk, R., Łachacz, A. and Kalisz, B. (2022) “Measurements versus estimates of soil subsidence and mineralization rates at peatland over 50 years (1966–2016)” Sustainability, 14(24), 16459. Available at: https://doi.org/10.3390/su142416459.
  • Oleszczuk, R., Zając, E. and Urbański, J. (2020) “Verification of empirical equations describing subsidence rate of peatland in Central Poland,” Wetlands Ecology and Management, 28, pp. 495–507. Available at: https://doi.org/10.1007/s11273-020-09727-y.
  • Pravalie, R. et al. (2020) “The impact of climate change on agricultural productivity in Romania. A country-scale assessment based on the relationship between climatic water balance and maize yields in recent decades,” Agricultural Systems, 179, 102767. Available at: https://doi.org/10.1016/j.agsy.2019.102767.
  • Seneviratne, S. et al. (2010) “Investigating soil moisture – climate interactions in a changing climate: A review,” Earth Science Reviews, 99(3–4), pp. 125–161. Available at: https://doi.org/10.1016/j.earscirev.2010.02.004.
  • Somorowska, U. (2022) “Amplified signals of soil moisture and evaporative stresses across Poland in the twenty-first century,” Science of the Total Environment, 812, 151465. Available at: https://doi.org/10.1016/j.scitotenv.2021.151465.
  • Tapoglou, E., Vozinaki, A.E. and Tsanis, I. 2019. “Climate change impact on the frequency of hydrometeorological extremes in the island of Crete,” Water, 11, 587. Available at: https://doi.org/10.3390/w11030587.
  • UNEP (2022) Global peatlands assessment – The state of the world’s peatlands: Evidence for action toward the conservation, restoration, and sustainable management of peatlands. Main Report. Nairobi: Global Peatlands Initiative. United Nations Environment Programme.
  • Urbański, J. et al. (2022) “Laboratory tests of water level regulators in ditches of irrigation systems,” Water, 14(8), 1259. Available at: https://doi.org/10.3390/w14081259.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cc58eeb-4990-4d65-9a8a-e3df4b59ae54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.