PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Freeze-dried crosslinked anionic hydrogels composed of poly(vinyl pyrrolidone) and poly(vinyl alcohol): synthesis, characterization and degradability performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poly(vinyl pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) has enticed significant research interest and are acknowledged among the principal volume of synthetic polymers that have been fabricated globally for nearly one century. This is as a result of their excellent attributes which dictated its wide-ranging usage in a range of applications, chiefly in medical field. The investigation is aimed at preparing PVP/PVA hydrogels using freeze drying technique for its characterization and accessing the biodegradability of the prepared hydrogel. Methods: Scanning electron microscopy and Fourier transform infrared spectroscopy were employed for the description of the morphology and chemical composition of the prepared hydrogels. More characterization studies were implemented by measurement of apparent density, porosity, swelling ratio and crystallinity of the fabricated hydrogel with the use of X-ray diffractometer (XRD). The biodegradability of the prepared hydrogel was also carried out in vitro in phosphate buffered saline. Results: As the PVP content increased the percentage of porosities from 45.00 ± 1.00% to 81.80 ± 0.20%, which was also accompanied by an increase in density. The prepared hydrogel showed increase in swelling ratio as the PVP content increased, the highest swelling ratio was found in PP4 with 95.58% with the least swelling time of 4 minutes. Conclusions: To sum it up, PVP plays a role as network and performance regulator in this sort of anisotropic hydrogels. This investigation offers a fascinating means of regulating morphology and general characteristics of the PVA-based anisotropic hydrogels.
Rocznik
Strony
65--73
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Department of Bioengineering, Faculty of Engineering, Cyprus International University, Haspolat, Lefkoşa, Northern Cyprus.
autor
  • Department of Bioengineering, Faculty of Engineering, Cyprus International University, Haspolat, Lefkoşa, Northern Cyprus.
  • Department of Bioengineering, Faculty of Engineering, Cyprus International University, Haspolat, Lefkoşa, Northern Cyprus.
Bibliografia
  • [1] ABD EL-MOHDY H.L., GHANEM S., Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation, J. Polym. Res., 2008, 16 (1), 1–10, DOI: 10.1007/s10965-008-9196-0.
  • [2] ALFURAYDI R., ALMINDEREJ F., MOHAMED N., Evaluation of Antimicrobial and Anti-Biofilm Formation Activities of Novel Poly(vinyl alcohol) Hydrogels Reinforced with Crosslinked Chitosan and Silver Nano-Particles, Polymers, 2022, 14 (8), 1619, DOI: 10.3390/polym14081619.
  • [3] BRANCO A.C., OLIVEIRA A.S., MONTEIRO I., NOLASCO P., SILVA D.C., FIGUEIREDO-PINA C.G. et al., PVA-based Hydrogels Loaded with Diclofenac for Cartilage Replacement, 2022, 8 (3), 143, DOI: 10.3390/gels8030143.
  • [4] CHEN C., KANG Y., HUO Z., ZHU Z., HUANG W., XIN H.L., SNYDER J.D., LI D., HERRON J.A., MAVRIKAKIS M., CHI M., MORE K.L., LI Y., MARKOVIC N.M., SOMORJAI G.A., YANG P., STAMENKOVIC V.R., Highly Crystalline Multimetallic Nanoframes with Three-Dim, DOI: 10.1126/science.1249061.
  • [5] CHOPRA H., BIBI S., KUMAR S., KHAN M.S., KUMAR P., SINGH I., Preparation and Evaluation of Chitosan/PVA Based Hydrogel Films Loaded with Honey for Wound Healing Application, 2022, 8 (2), 111, DOI: 10.3390/gels8020111.
  • [6] CHU Z., XUE C., SHAO K., XIANG L., ZHAO X., CHEN C., PAN J., LIN D., Photonic crystal-embedded molecularly imprinted contact lenses for controlled drug release, ACS Appl. Bio Mater., 2021, 5 (1), 243–251, DOI: 10.1021/acsabm.1c01045.
  • [7] CHUANGCHOTE S., SAGAWA T., YOSHIKAWA S., Electrospinning of poly(vinyl pyrrolidone): Effects of solvents on electrospinnability for the fabrication of poly(p-phenylene vinylene) and TiO2 nanofibers, J. Appl. Polym. Sci., 2009, 114 (5), 2777–2791, DOI: 10.1002/app.30637.
  • [8] DAS S., SUBUDDHI U., Controlled delivery of ibuprofen from poly(vinyl alcohol)−poly(ethylene glycol) interpenetrating polymeric network hydrogels, JPA. 2019, 9 (2), 108–116, DOI: 10.1016/j.jpha.2018.11.007.
  • [9] ELASHMAWI I., ABDEL BAIETH H., Spectroscopic studies of hydroxyapatite in PVP/PVA polymeric matrix as biomaterial, Curr. Appl. Phys., 2012, 12 (1), 141–146, DOI: 10.1016/j.cap.2011.05.011.
  • [10] FATIMI A., OKORO O.V., PODSTAWCZYK D., SIMIŃSKA-STANNY J., SHAVANDI A., Natural Hydrogel-based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review, 2022, 8 (3), 179, DOI: 10.3390/gels8030179.
  • [11] GUO Y., HAO Z., WAN C., Tribological characteristics of polyvinylpyrrolidone (PVP) as a lubrication additive for artificial knee joint, Tribology International, 2016, 93, 214–219, DOI: 10.1016/j.triboint.2015.08.043.
  • [12] GUPTA S., WEBSTER T.J., SINHA A., Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface, J. Mater Sci. Mater Med., 2011, 22 (7), 1763–1772, DOI:10.1007/s10856-011-4343-2.
  • [13] HOLLOWAY J.L., LOWMAN A.M., PALMESE G.R., The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels, Soft Matter, 2013, 9 (3), 826–833, DOI: 10.1039/c2sm26763b.
  • [14] HU X., TAN H., HAO L., Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy, J. Mech. Behav. Biomed. Mater, 2016, 64, 43–52, DOI: 10.1016/j.jmbbm.2016.07.005.
  • [15] HUANG M., HOU Y., LI Y., WANG D., ZHANG L., High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator, Des. Monomers Polym., 2017, 20 (1), 505–513, DOI: 10.1080/15685551.2017.1382433.
  • [16] JALAGERI M.B., MOHAN KUMAR G.C., Hydroxyapatite Reinforced Polyvinyl Alcohol/Polyvinyl Pyrrolidone Based Hydrogel for Cartilage Replacement, Gels, 2022, 8, 555, DOI: 10.3390/gels8090555.
  • [17] JENSEN B.E., EDLUND K., ZELIKIN A.N., Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors, Biomaterials, 2015, 49, 113–124, DOI: 10.1016/j.biomaterials. 2015.01.036.
  • [18] JIANG H., YANG Y., LIN Z., ZHAO B., WANG J., XIE J., ZHANG A., Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion, Sci. Total Environ., 2020, 744, 140653, DOI: 10.1016/j.scitotenv.2020.140653.
  • [19] KANCA Y., MILNER P., DINI D., AMIS A.A., Tribological properties of PVA/PVP blend hydrogels against articular cartilage, J. Mech. Behav. Biomed. Mater, 2018, 1 (78), 36–45, DOI: 10.1016/j.jmbbm.2017.10.027.
  • [20] KUIPER J.P., PUTTLITZ C.M., RAWLINSON J.E., DOBBS R., LABUS K.M., A mechanical evaluation of polyvinyl alcohol hydrogels for temporomandibular joint disc replacement, Front. Phys., 2022, 10, 928579, DOI: 10.3389/fphy.2022.928579.
  • [21] LI P., JIANG S., YU Y., YANG J., YANG Z., Biomaterial characteristics and application of silicone rubber and PVA hydrogels mimicked in organ groups for prostate brachytherapy, J. Mech. Behav. Biomed. Mater, 2015, 49, 220–234, DOI: 10.1016/j.jmbbm.2015.05.012.
  • [22] MA R., XIONG D., MIAO F., ZHANG J., PENG Y., Friction properties of novel PVP/PVA blend hydrogels as artificial cartilage, J. Biomed. Mater Part A, 2009, 9999, DOI: 10.1002/jbm.a.32552.
  • [23] MALKA E., DOMBROVSKY A., MARGEL S., Preparation and Characterization of a Novel PVA/PVP Hydrogel Containing Entrapped Hydrogen Peroxide for Agricultural Applications, ACS Agric. Sci. Technol., 2022, 2 (3), 430–436, DOI: 10.1021/acsagscitech.2c00003.
  • [24] MARANI D., SUDIREDDY B.R., NIELSEN L., NDONI S., KIEBACH R., Poly(vinylpyrrolidone) as dispersing agent for cerium-gadolinium oxide (CGO) suspensions, J. Mater. Sci., 2015, 51 (2), 1098–1106, DOI: 10.1007/s10853-015-9439-5.
  • [25] MARUI Y., KIDA T., AKASHI M., Facile Morphological Control of Cyclodextrin Nano- and Microstructures and Their Unique Organogelation Ability, Chem. Mater, 2009, 22 (2), 282–284, DOI: 10.1021/cm903407e.
  • [26] MASTRANGELO R., CHELAZZI D., POGGI G., FRATINI E., PENSABENE BUEMI L., PETRUZZELLIS M.L., BAGLIONI P., Twin-chain polymer hydrogels based on poly(vinyl alcohol) as new advanced tool for the cleaning of modern and contemporary art., Proc. Natl. Acad. Sci., 2020, 117 (13), 7011–7020, DOI: 10.1073/pnas.1911811117.
  • [27] MAULVI F.A., LAKDAWALA D.H., SHAIKH A.A., DESAI A.R., CHOKSI H.H., VAIDYA R.J., RANCH K.M., KOLI A.R., VYAS B.A., SHAH D.O., In vitro and in vivo evaluation of novel implantation technology in hydrogel contact lenses for controlled drug delivery, JCR. 2016, 226, 47–56, DOI: 10.1016/j.jconrel.2016.02.012.
  • [28] MORARIU S., BERCEA M., TEODORESCU M., AVADANEI M., Tailoring the properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels for biomedical applications, Eur. Polym. J., 2016, 84, 313–325, DOI: 10.1016/j.eurpolymj.2016.09.033.
  • [29] NKHWA S., LAURIAGA K.F., KEMAL E., DEB S., Poly(vinyl alcohol): Physical Approaches to Designing Biomaterials for Biomedical Applications, Conference Papers in Science, 2014, 1–7, DOI: 10.1155/2014/403472.
  • [30] OUSTADI F., HAGHBIN NAZARPAK M., MANSOURI M., KETABAT F., Preparation, characterization, and drug release study of ibuprofen-loaded poly (vinyl alcohol)/poly (vinyl pyrrolidone) bilayer antibacterial membrane, Int. J. Polym. Mater, 2020, 71 (1), 14–23, DOI: 10.1080/00914037.2020.1798437.
  • [31] PAVIA D.L., LAMPMAN G.M., VYVYAN J.R., Introduction to Spectroscopy., 2015.
  • [32] SHI Y., XIONG D., ZHANG J., Effect of irradiation dose on mechanical and biotribological properties of PVA/PVP hydrogels as articular cartilage, Tribol. Int., 2014, 78, 60–67, DOI: 10.1016/j.triboint.2014.05.001.
  • [33] SONG H.S., KWON O.S., KIM J.H., CONDE J., ARTZI N., 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics, Biosens. Bioelectron., 2017, 89, 187–200, DOI: 10.1016/j.bios.2016.03.045.
  • [34] TAVAKOLI M., ALHAIS LOPES P., HAJALILOU A., SILVA A.F., REIS CARNEIRO M., CARVALHEIRO J., MARQUES PEREIRA J., DE ALMEIDA A.T., 3R Electronics: Scalable Fabrication of Resilient, Repairable, and Recyclable Soft-Matter Electronics, Adv. Mater. 2022, 34 (31), 2203266, DOI: 10.1002/adma.202203266.
  • [35] TEODORESCU M., BERCEA M., MORARIU S., Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges, Biotechnol. Adv., 2019, 37 (1), 109–131, DOI: 10.1016/j.biotechadv.2018.11.008.
  • [36] TORRES-MARTÍNEZ E.J., VERA-GRAZIANO R., CERVANTES-UC J.M., BOGDANCHIKOVA N., OLIVAS-SARABIA A., VALDEZ-CASTRO R., SERRANO-MEDINA A., IGLESIAS A.L., PÉREZ-GONZÁLEZ G.L., CORNEJO-BRAVO J.M., VILLARREAL-GÓMEZ L.J., Preparation and characterization of electrospun fibrous scaffolds of either PVA or PVP for fast release of sildenafil citrate, e-Polymers, 2020, 20 (1), 746–758, DOI: 10.1515/epoly-2020-0070.
  • [37] VANHAROVA L., JULINOVA M., SLAVIK R., PVP-based Materials: Biodegradation in Different Environments, Ecol. Chem. Eng. S S, 2017, 24 (2), 299–309, DOI: 10.1515/eces-2017-0021.
  • [38] WANG M., BAI J., SHAO K., TANG W., ZHAO X., LIN D., HUANG S., CHEN C., DING Z., YE J., Poly (vinyl alcohol) hydrogels: The old and new functional materials, Int. J. Polym. Sci., 2021, 30 (2021), 1–6, DOI: 10.1155/2021/2225426.
  • [39] WANG N., LIU Z., YANG J., SONG Y., YANG J., Investigation of antibacterial activity of one-dimensional electrospun Walnut green husk extract-PVP nanofibers, Iran. Polym. J., 2022, 31 (6), 779–785, DOI :10.1007/s13726-022-01037-9.
  • [40] WANG Y., LI J., MUHAMMAD N., WANG Z., WU D., Hierarchical networks of anisotropic hydrogels based on cross-linked Poly(vinyl alcohol)/Poly(vinylpyrrolidone), Polymer, 2022, 251, 124920, DOI: 10.1016/j.polymer.2022.124920.
  • [41] WEI Q., ZHANG Y., WANG Y., CHAI W., YANG M., Measurement and modeling of the effect of composition ratios on the properties of poly(vinyl alcohol)/poly(vinyl pyrrolidone) membranes, Mater. Des., 2016, 103, 249–258, DOI: 10.1016/j.matdes.2016.04.087.
  • [42] YURONG G., DAPENG L., Preparation and characterization of corn starch/PVA/glycerol composite films incorporated with ε-polylysine as a novel antimicrobial packaging material, e-Polymers, 2020, 20 (1), 154–161, DOI: 10.1515/epoly-2020-0019.
  • [43] ZHENG Y., HUANG X., WANG Y., XI T., CHEN X., XU H., The surface lubricative properties of PVA/PVP hydrogels treated with radiation used as artificial cartilage, Appl. Surf. Sci., 2008, 255 (2), 568–570, DOI: 10.1016/j.apsusc.2008.06.144.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cc56930-b57a-4380-83c9-12905b87ccb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.