PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Characterization of Sound Absorption for Composite PanelMade of Perforated Plate and Membrane Foam Layer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A recent key challenge in noise engineering is the development of structures or materials that achievedesirable acoustic performance in practical settings. Combinations of porous layers and perforated plates of-fer potential composite absorbers for various acoustic applications. The present work conducts experimentalcharacterizations of sound absorption performance of absorbers based on membrane foams combined with per-forated plates. Membrane foams with the well-controlled cell size and porosity are fabricated by milli-fluidictools, whereas perforated plates are made within a tuned perforation ratio. The three-microphone method isused to perform the acoustic measurements. The results obtained from ten combination samples reveal thatthe sound absorption behavior of the foam-based layers can be successfully tailored and improved by a thinperforated plate within a reasonable hole diameter and spacing while maintaining the total thickness of thecomposite absorber.
Rocznik
Strony
17--23
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
  • Institute of Vehicle and Energy Engineering, Le Quy Don Technical UniversityHoang Quoc Viet, Hanoi, Vietnam
autor
  • School of Mechanical Science and Engineering, Huazhong University of Science and TechnologyWuhan, Hubei, China
Bibliografia
  • 1. Allard J.F., Atalla N. (2009), Propagation of Sound in Porous Media: Modelling Sound Absorbing Material s, 2nd ed., JohnWiley & Sons.
  • 2. Arenas J.P., Crocker M.J. (2010), Recent trends in porous sound-absorbing materials, Sound & Vibration, 44(7): 12-18.
  • 3. ASTM C423-23 (2023), Standard test method for sound absorption and sound absorption coefficients by the reverberation room method, ATM International, https://doi.org/10.1520/C0423-22.
  • 4. Atalla N., Sgard F. (2007), Modeling of perforated plates and screens using rigid frame porous models, Journal of Sound and Vibration, 303(1-2): 195-208, https://doi.org/10.1016/j.jsv.2007.01.012.
  • 5. Attenborough K., V´er I.L. (2006), Sound-absorbing materials and sound absorbers, [in:] Noise and Vibration Control Engineering: Principles and Applications, V´er I.L., Veranek L.L. [Eds.], 2nd ed., John Wiley & Sons, https://doi.org/10.1002/9780470172568.ch8.
  • 6. Borelli D., Schenone C. (2021), On the acoustic transparency of perforated metal plates facing a porous fibrous material, Noise Mapping, 8(1): 185-203, https://doi.org/10.1515/noise-2021-0014.
  • 7. Boulvert J. et al. (2019), Optimally graded porous material for broadband perfect absorption of sound, Journal of Applied Physics, 126(17): 175101, https://doi.org/10.1063/1.5119715.
  • 8. Duan H., Shen X., Yang F., Bai P., Lou X., Li Z. (2019), Parameter optimization for composite structures of microperforated panel and porous metal for optimal sound absorption performance, Applied Sciences, 9(22): 4798, https://doi.org/10.3390/app9224798.
  • 9. Gasser S., Paun F., Br´echet Y. (2005), Absorptive properties of rigid porous media: Application to face centered cubic sphere packing, The Journal of the Acoustical Society of America, 117(4): 2090-2099, https://doi.org/10.1121/1.1863052.
  • 10. Jafari M.J., Khavanin A., Ebadzadeh T., Fazlali M., Sharak M.N., Madvari R.F. (2020), Optimization of the morphological parameters of a metal foam for the highest sound absorption coefficient using local search algorithm, Archives of Acoustics, 45(3):487-497, https://doi.org/10.24425/aoa.2020.134066.
  • 11. Kosała K. (2024), Modelling the acoustic properties of baffles made of porous and fibrous materials, Archives of Acoustics, 49(3): 345-357, https://doi.org/10.24425/aoa.2024.148792.
  • 12. Langlois V., Kaddami A., Pitois O., Perrot C. (2020), Acoustics of monodisperse open-cell foam: An experimental and numerical parametric study, The Journal of the Acoustical Society of America, 148(3):1767-1778, https://doi.org/10.1121/10.0001995.
  • 13. Lee C.-Y., Leamy M.J., Nadler J.H. (2009), Acoustic absorption calculation in irreducible porous media: A unified computational approach, The Journal of the Acoustical Society of America, 126(4): 1862-1870, https://doi.org/10.1121/1.3205399.
  • 14. Liu Z., Zhan J., Fard M., Davy J.L. (2017), Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel, Applied Acoustics, 121: 25-32, https://doi.org/10.1016/j.apacoust.2017.01.032.
  • 15. Nguyen C.T., Langlois V., Guilleminot J., Duval A., Perrot C. (2024), Effect of pore size polydispersity on the acoustic properties of high-porosity solid foams, Physics of Fluids, 36(4): 047101, https://doi.org/10.1063/5.0191517.
  • 16. Olny X., Panneton R. (2008), Acoustical determination of the parameters governing thermal dissipation in porous media, The Journal of the Acoustical Society of America, 123(2): 814-824, https://doi.org/10.1121/1.2828066.
  • 17. Panneton R., Olny X. (2006), Acoustical determination of the parameters governing viscous dissipation in porous media, The Journal of the Acoustical Society of America, 119(4): 2027-2040, https://doi.org/10.1121/1.2169923.
  • 18. Park J.H. et al. (2017), Optimization of low frequency sound absorption by cell size control and multiscale poroacoustics modeling, Journal of Sound and Vibration, 397(9): 17-30, https://doi.org/10.1016/j.jsv.2017.03.004.
  • 19. Sagartzazu X., Hervella-Nieto L., Pagalday J.M. (2008), Review in sound absorbing materials, Archives of Computational Methods in Engineering, 15(3): 311-342, https://doi.org/10.1007/s11831-008-9022-1.
  • 20. Salissou Y., Panneton R. (2010), Wideband characterization of the complex wave number and characteristic impedance of sound absorbers, The Journal of the Acoustical Society of America, 128(5): 2868-2876, https://doi.org/10.1121/1.3488307.
  • 21. Soltani P., Norouzi M. (2020), Prediction of the sound absorption behavior of nonwoven fabrics: Computational study and experimental validation, Journal of Sound and Vibration, 485: 115607, https://doi.org/10.1016/j.jsv.2020.115607.
  • 22. Trinh V.H., Guilleminot J., Perrot C. (2021), On the sensitivity of the design of composite sound absorbing structures, Materials & Design, 210: 110058, https://doi.org/10.1016/j.matdes.2021.110058.
  • 23. Trinh V.H., Guilleminot J., Perrot C., Vu V.D. (2022a), Learning acoustic responses from experiments: A multiscale-informed transfer learning approach, The Journal of the Acoustical Society of America, 151(4): 2587-2601, https://doi.org/10.1121/10.0010187.
  • 24. Trinh V.H., Langlois V., Guilleminot J., Perrot C., Khidas Y., Pitois O. (2019), Tuning membrane content of sound absorbing cellular foams: Fabrication, experimental evidence and multiscale numerical simulations, Materials & Design, 162: 345-361, https://doi.org/10.1016/j.matdes.2018.11.023.
  • 25. Trinh V.-H., Nguyen T.-V., Nguyen T.-H.-N., Nguyen M.-T. (2022b), Design of sound absorbers based on open-cell foams via microstructure-based modeling, Archives of Acoustics, 47(4): 501-512, https://doi.org/10.24425/aoa.2022.142894.
  • 26. Viet Dung V., Panneton R., Gagn´e R. (2019), Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach, The Journal of the Acoustical Society of America, 145(6): 3606-3624, https://doi.org/10.1121/1.5111753.
  • 27. Yang X., Ren S., Wang W., Liu X., Xin F., Lu T. (2015), A simplistic unit cell model for sound absorption of cellular foams with fully/semi-open cells, Composites Science and Technology, 118: 276-283, https://doi.org/10.1016/j.compscitech.2015.09.009.
  • 28. Zhang H., Wang Y., Lu K., Zhao H., Yu D., Wen J. (2021), SAP-Net: Deep learning to predict sound absorption performance of metaporous materials, Materials & Design, 212: 110156, https://doi.org/10.1016/j.matdes.2021.110156.
  • 29. Zieliński T.G. et al. (2022), Taking advantage of a 3D printing imperfection in the development of sound-absorbing materials, Applied Acoustics, 197: 108941, https://doi.org/10.1016/j.apacoust.2022.108941.
  • 30. Zieliński T.G., Venegas R., Perrot C., ˇCervenka M., Chevillotte F., Attenborough K. (2020), Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, Journal of Sound and Vibration, 483: 115441, https://doi.org/10.1016/j.jsv.2020.115441.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cb8e9be-c787-4c1b-bf3e-8c3810db54fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.