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Abstract. We study the k-summability of divergent formal solutions for the Cauchy problem
of certain linear partial differential operators with coefficients which are polynomial in t. We
employ the method of successive approximation in order to construct the formal solutions
and to obtain the properties of analytic continuation of the solutions of convolution equations
and their exponential growth estimates.
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1. RESULT

Let a linear partial differential operator with t-dependent polynomial coefficients L
be given by

L = ∂t − P (t, ∂x), P (t, ∂x) =

finite∑

α,i∈N0

aαit
i∂α

x , (1.1)

where (t, x) ∈ C2, (∂t, ∂x) = (∂/∂t, ∂/∂x), aαi ∈ C and N0 denotes the set of non
negative integers.

We consider the following Cauchy problem for L

{
LU(t, x) ≡ (∂t − P (t, ∂x))U(t, x) = 0,

U(0, x) = ϕ(x) ∈ Ox,
(1.2)

c© AGH University of Science and Technology Press, Krakow 2015 625



626 Kunio Ichinobe and Masatake Miyake

where Ox denotes the set of holomorphic functions in a neighborhood of the origin
x = 0. The Cauchy problem (1.2) has a unique formal solution of the form

Û(t, x) =

∞∑

n=0

Un(x)
tn

n!
, U0(x) = ϕ(x). (1.3)

We assume that for the operator P = P (t, ∂x)

max{α; aαi 6= 0} ≥ 2, (A-1)

which is called non-Kowalevskian condition. In this case, the formal solution is diver-
gent in general.

Our purpose in this paper is to study the k-summability of this divergent solution
under some conditions for L. In order to explain the conditions we define the Newton
polygon of L.

We define a domain N(α, i) by

N(α, i) := {(x, y) ∈ R2; x ≤ α, y ≥ i} for aαi 6= 0,

and N(α, i) := φ for aαi = 0. Then the Newton polygon N(L) is defined by

N(L) := Ch



N(1,−1)

⋃

α,i∈N0

N(α, i)



 , (1.4)

where Ch{. . .} denotes the convex hull of points in N(1,−1) ∪α,i N(α, i). Here
N(1,−1) := {(x, y) ; x ≤ 1, y ≥ −1}. We assume that

the Newton polygon N(L) has only one side of a positive slope with
two end points (1,−1) and (α∗, i∗), where α∗ > 1, i∗ ≥ 0 (see Figure 1).

(A-2)

In this case, we notice α∗ = max{α; aαi 6= 0}(≥ 2).

O

y

x

(1,−1)

N(L) (α∗, i∗)

Fig. 1
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We put
α∗

i∗ + 1
=:

p

q
, (p, q) = 1. (1.5)

Then we assume
p = q = 1, (A-3)

which means that α∗ = i∗ + 1. Moreover, we assume that the indices (α, i) of the
operator P satisfy the following inequalities.

i ≤ i∗ for aαi 6= 0, (A-4)

α∗
i∗ + 1

≥ α

i+ 1
. (A-5)

We call this number α∗/(i∗ + 1) the modified order of L (cf. [6, 10,14]).
Finally, we prepare the notation S(d, β, ρ). For d ∈ R, β > 0 and ρ (0 < ρ ≤ ∞),

we define a sector S = S(d, β, ρ) by

S(d, β, ρ) :=

{
t ∈ C; |d− arg t| < β

2
, 0 < |t| < ρ

}
, (1.6)

where d, β and ρ are called the direction, the opening angle and the radius of S,
respectively. We write S(d, β,∞) = S(d, β) for short.

Under the above preparations, our result is stated as follows.

Theorem 1.1. We suppose the assumptions (A-1)–(A-5). Let d ∈ R be fixed and
dj = d+ (arg aα∗i∗ + 2πj)/α∗ for j = 0, 1, . . . , α∗ − 1. Let

κ =
i∗ + 1

α∗ − 1
. (1.7)

We assume that the Cauchy data ϕ(x) ∈ Ox can be analytically continued in the region⋃α∗−1
j=0 S(dj , ε) for some positive ε, and has the following exponential growth estimate

|ϕ(x)| ≤ C exp
(
δ|x|

α∗
α∗−1

)
, x ∈

α∗−1⋃

j=0

S(dj , ε), (1.8)

for some positive constants C and δ. Then the divergent solution Û(t, x) of the Cauchy
problem (1.2) is κ-summable in d direction.

In appendix A, we shall characterize the exponential growth order of the entire
function Cauchy data which guarantees the convergence in t-variable of the formal
solutions. The obtained result is just corresponding to that in the condition (1.8).

On the k-summability of divergent solutions for non-Kowalevskian equations like
heat equation, there are many studies for partial differential operators with constant
coefficients (e.g. [7] for the heat equation, [2] for general equations and its references).
But the study for equations with variable coefficients has not been developed yet. In
the papers [3] and [4], the first author treated the equations with coefficients which
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are monomial in t. In this paper, we consider the equations with coefficients which
are polynomial in t. Our theorem is a generalization of the result in [3].

We shall give the proof of Theorem 1.1 by using the method of successive ap-
proximation. This paper consists of the following construction. We give a review of
k-summability in Section 2. In Section 3, we construct the formal solution of the
original Cauchy problem. For the purpose, we give a decomposition of the operator
P and construct exact formal successive approximation solutions which are based
upon the decomposition of P . In Section 4, we give a result of Gevrey order of formal
solutions and we define formal series associated with formal solutions of the Cauchy
problems. In Section 5, we give the property of k-summability for the associated
formal series. After that, we give a proof of Theorem 1.1 in Section 6 by using the
property of formal successive approximation solutions. In Sections 7 and 8, we give
proofs of the properties of summability given in Sections 5 and 6. Finally, we give the
characterization of a class of Cauchy data for the convergence of formal solutions in
Appendix A and the proof of Lemma 4.3 in Appendix B.

We remark that the summability and convergence theory of the formal solutions
in this paper are written by the first author and the second author, respectively.

2. REVIEW OF k-SUMMABILITY

In this section, we give some notation and definitions in the way of Ramis or Balser
(cf. W. Balser [1] for details).

Let k > 0, S = S(d, β) and B(σ) := {x ∈ C; |x| ≤ σ}. Let v(t, x) ∈ O(S × B(σ))
which means that v(t, x) is holomorphic in S × B(σ). Then we define that v(t, x) ∈
Expt(k, S × B(σ)) if, for any closed subsector S′ of S, there exist some positive
constants C and δ such that

max
|x|≤σ

|v(t, x)| ≤ Ceδ|t|
k

, t ∈ S′. (2.1)

For k > 0, we define that v̂(t, x) =
∑∞

n=0 vn(x)t
n ∈ Ox[[t]]1/k (we say v̂(t, x) is

a formal power series of Gevrey order 1/k) if vn(x) are holomorphic on a common
closed disk B(σ) for some σ > 0 and there exist some positive constants C and K
such that for any n,

max
|x|≤σ

|vn(x)| ≤ CKnΓ
(
1 +

n

k

)
. (2.2)

Here when vn(x) ≡ vn (constants) for all n, we use the notation C[[t]]1/k instead of
Ox[[t]]1/k.

Let k > 0, v̂(t, x) =
∑∞

n=0 vn(x)t
n ∈ Ox[[t]]1/k and v(t, x) be an analytic function

on S(d, β, ρ)×B(σ). Then we define that

v(t, x) ∼=k v̂(t, x) in S = S (d, β, ρ), (2.3)
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if for any closed subsector S′ of S, there exist some positive constants C and K such
that for any N ≥ 1, we have

max
|x|≤σ

∣∣∣∣∣v(t, x)−
N−1∑

n=0

vn(x)t
n

∣∣∣∣∣ ≤ CKN |t|NΓ

(
1 +

N

k

)
, t ∈ S′. (2.4)

For k > 0, d ∈ R and v̂(t, x) ∈ Ox[[t]]1/k, we say that v̂(t, x) is k-summable in d
direction, and denote it by v̂(t, x) ∈ Ox{t}k,d, if there exist a sector S = S(d, β, ρ)
with β > π/k and an analytic function v(t, x) on S×B(σ) such that v(t, x) ∼=k v̂(t, x)
in S.

We remark that the function v(t, x) above for a k-summable v̂(t, x) is unique if it
exists. Therefore such a function v(t, x) is called the k-sum of v̂(t, x) in d direction.

3. CONSTRUCTION OF FORMAL SOLUTION

3.1. DECOMPOSITION OF OPERATOR P (t, ∂x)

In this subsection, we give a decomposition of the operator P .
For j ≥ 0, we define

Kj = {(α, i); j = i+ 1− α, aαi 6= 0} ,

and we put

Pj(t, ∂x) :=
∑

(α,i)∈Kj

aαit
i∂α

x .

Especially, we obtain

K0 = {(α, i); 0 ≤ i ≤ i∗, α = i+ 1}, Kj = {(α, i); j − 1 ≤ i ≤ i∗, α = i+ 1− j}.

Therefore, we obtain

P (t, ∂x) =

i∗+1∑

j=0

Pj(t, ∂x).

3.2. THE SEQUENCE OF CAUCHY PROBLEMS

By employing the decomposition of the operator P given in previous subsection, we
consider the following sequence of Cauchy problems.

{
∂tu0(t, x) = P0(t, ∂x)u0(t, x),

u0(0, x) = ϕ(x).
(E0)
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For k ≥ 1, define




∂tuk(t, x) = P0(t, ∂x)uk(t, x) +

min{i∗+1,k}∑

j=1

Pj(t, ∂x)uk−j(t, x),

uk(0, x) = 0.

(Ek)

For each k, the Cauchy problem (Ek) has a unique formal power series solution of the
form

ûk(t, x) =
∑

n≥0

uk,n(x)
tn

n!
. (Solk)

Then Û(t, x) =
∑

k≥0 ûk(t, x) is the formal power series solution of the original Cauchy
problem (1.2).

3.3. CONSTRUCTION OF FORMAL SOLUTIONS ûk(t, x)

In this subsection, we construct the formal solutions ûk(t, x) of the Cauchy prob-
lems (Ek).

Lemma 3.1. Let k ≥ 0. For each k, the formal solution ûk(t, x) of the Cauchy
problem (Ek) is given by

ûk(t, x) =
∑

n≥0

uk,n(x)
tn

n!
=
∑

n≥0

Ak(n)ϕ
(n−k)(x)

tn

n!
, (3.1)

where {Ak(n)} satisfy the following recurrence formula:
When k = 0, one has




A0(n+ 1) =

∑

K0

aαi[n]iA0(n− i) (n ≥ 0),

A0(0) = 1,

(R0)

where we interpret as Ak(n) = 0 for all k if n < 0. Here the notation [n]i is defined
by

[n]i :=

{
n(n− 1)(n− 2) . . . (n− i+ 1), i ≥ 1,

1, i = 0.

When k ≥ 1, one has




Ak(n+ 1) =
∑

K0

aαi[n]iAk(n− i) +

min{i∗+1,k}∑

j=1

∑

Kj

aαi[n]iAk−j(n− i) (n ≥ 0),

Ak(0) = 0.

(Rk)

By substituting (Solk) into the equation (Ek), we can see that uk,n(x) =
Ak(n)ϕ

(n−k)(x), where {Ak(n)} satisfy the recurrence formulas (Rk). We omit the
details.
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4. GEVREY ORDER OF FORMAL SOLUTIONS ûk

We give a result of Gevrey order of formal solutions ûk(t, x) of (Ek).

Lemma 4.1. Let k ≥ 0 and let ûk(t, x) be the formal solutions of the Cauchy prob-
lem (Ek). Then we have ûk(t, x) ∈ Ox[[t]]1/κ, κ = (i∗ + 1)/(α∗ − 1).

This proposition was already proved by many mathematicians (for determination
of Gevrey order from the Newton polygon of the differential equations, see [13, 16]).
We omit the proof.

We introduce formal series associated with formal solutions ûk.
We define

f̂k(t) :=
∑

n≥0

Ak(n)t
n, (4.1)

which are the generating function of {Ak(n)} for all k. Then we obtain the following
result of Gevrey order of f̂k.

Lemma 4.2. We have f̂k(t) ∈ C[[t]]1/κ, where

κ = (i∗ + 1)/(α∗ − 1) = (i∗ + 1)/i∗. (4.2)

Especially, we obtain the following lemma.

Lemma 4.3. There exist positive constants A and B such that for all n, we have

|Ak(n)| ≤ ABn+kn!
1
κ . (4.3)

Lemma 4.2 follows from Lemma 4.3 or the fact that f̂k(t) satisfy the following
ordinary differential equations.

When k = 0, one has
(∑

K0

aαit
i+1[δt + i]i − 1

)
f̂0(t) = −1, (4.4)

where δt = td/(dt) denotes the Euler operator.
When k ≥ 1, one has

(∑

K0

aαit
i+1[δt + i]i − 1

)
f̂k(t) = −

min{i∗+1,k}∑

j=1

∑

Kj

aαit
i+1[δt + i]if̂k−j(t). (4.5)

We remark that the above ordinary differential equations are derived from the recur-
rence formulas of {Ak(n)}. Moreover, from the differential equations (4.4) and (4.5)
we immediately see that f̂k(t) = O(tk) (k ≥ 0) by induction.

For the estimates of Ak(n) in Lemma 4.3, we use the majorant method for the
recurrence formulas of {Ak(n)} (cf. [16]). We will give the proof in Appendix B.
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5. PRELIMINARIES FOR PROOF OF THEOREM 1.1

In this section, we prepare some results which are employed to prove Theorem 1.1.
First, we give the important lemma for the summability theory (cf. [1, 7]).

Lemma 5.1. Let κ > 0, d ∈ R and v̂(t, x) =
∑∞

n=0 vn(x)t
n ∈ Ox[[t]]1/κ. Then the

following statements are equivalent:

(i) v̂(t, x) ∈ Ox{t}κ,d.
(ii) We put

vB(s, x) = (B̂κv̂)(s, x) :=

∞∑

n=0

vn(x)

Γ(1 + n/κ)
sn, (5.1)

which is a formal κ-Borel transformation of v̂(t, x), that is convergent in a neigh-
borhood of (s, x) = (0, 0). Then vB(s, x) ∈ Exps(κ, S(d, ε)×B(σ)) for some ε > 0
and σ > 0.

Next, we prepare lemmas for the summability of f̂k(t) which is given by (4.1),
whose proofs are given in Section 8.

Lemma 5.2. Let f̂k(t) be given by (4.1) and κ = (i∗ + 1)/i∗. Then f̂k(t) ∈ C{t}κ,θ
for θ satisfying

θ 6≡ −(arg aα∗,i∗ + 2πn)/(i∗ + 1) (mod 2π) (n = 0, 1, . . . , i∗). (5.2)

Equivalently we shall prove the following.

Lemma 5.3. Let κ = (i∗ + 1)/i∗. Then fkB(s) = (B̂κf̂k)(s) has (i∗ + 1) singular
points in s plane which are given by

s = cκ(aα∗,i∗)
−1/(i∗+1)ω−n

i∗+1, n = 0, 1, . . . , i∗, (5.3)

where cκ = (1/κ)1/κ and ωq = e2πi/q. Moreover, we obtain fkB(s) ∈ Exps(κ, S(θ, ε0)),
where θ satisfies (5.2) and ε0 > 0. Especially, we obtain the following estimates for
k ≥ 0

|fkB(s)| ≤ Ck|s|k exp(δ|s|κ), s ∈ S(θ, ε0), (5.4)
where δ is independent of k and Ck ≤ ĈK̂k with some positive Ĉ and K̂.

6. PROOF OF THEOREM 1.1

By employing Lemmas 5.1 and 5.3, we obtain the following results, which will be
proved in the next section.

Proposition 6.1. Let d be fixed and define (uk)B(s, x) = (B̂κûk)(s, x). We assume
that the Cauchy data ϕ(x) satisfies the same assumptions as in Theorem 1.1. Then
for all k, we have

max
|x|≤σ

|(uk)B(s, x)| ≤ CKk |s|k
k!

exp (δ|s|κ) , s ∈ S(d, ε) (6.1)

by some positive constants C,K, δ and σ.
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Corollary 6.2. Let κ = (i∗ + 1)/(α∗ − 1) and d ∈ R be fixed. We assume that the
Cauchy data ϕ(x) satisfies the same assumptions as in Theorem 1.1. Then the formal
solutions ûk(t, x) of (Ek) is κ-summable in d direction.

We can prove Theorem 1.1 under these preparations.

Proof of Theorem 1.1. Let Û(t, x) =
∑

k≥0 ûk(t, x) be the formal solution of original
Cauchy problem (1.2). We finish the proof of Theorem 1.1 by showing that UB(s, x) =
(B̂κÛ)(s, x) =

∑
k≥0(uk)B(s, x) ∈ Exps(κ, S(d, ε)).

By using Proposition 6.1, we obtain the desired estimate of UB(s, x) for s ∈ S(d, ε).

max
|x|≤σ

|UB(s, x)| ≤
∑

k≥0

max
|x|≤σ

|(uk)B(s, x)| ≤ C exp(δ|s|κ)
∑

k≥0

(K|s|)k
k!

= C exp(δ|s|κ) · exp(K|s|) ≤ C̃ exp(δ̃|s|κ) (∵ 1 < κ)

by some positive constants C̃ > C and δ̃ > δ.

7. PROOF OF PROPOSITION 6.1

In this section, we shall give the proof of Proposition 6.1, since Corollary 6.2 follows
from Proposition 6.1 immediately (cf. [7–9,12]).

The formal solution ûk(t, x) of (Ek) is given by

ûk(t, x) =
∑

n≥k

Ak(n)ϕ
(n−k)(x)

tn

n!
=
∑

n≥0

Ak(n+ k)ϕ(n)(x)
tn+k

(n+ k)!
.

Then the formal κ-Borel transformation of ûk is given by

(uk)B(s, x) =
∑

n≥0

Ak(n+ k)ϕ(n)(x)
sn+k

(n+ k)!Γ(1 + (n+ k)/κ)
.

By using the Cauchy integral formula, we have for sufficiently small s and x

(uk)B(s, x) =
1

2πi

∮

|ζ|=r1

ϕ(x+ ζ)

ζ

∑

n≥0

n!

(n+ k)!

Ak(n+ k)

Γ(1 + (n+ k)/κ)

sn+k

ζn
dζ.

Here when k ≥ 1, we notice

n!

(n+ k)!
=

B(n+ 1, k)

(k − 1)!
=

1

(k − 1)!

1∫

0

yn(1− y)k−1dy.

Therefore, for k ≥ 1 we have

(uk)B(s, x) =
1

2πi

1∫

0

(1− y)k−1y−k

(k − 1)!
dy

∮

|ζ|=r1

ϕ(x+ ζ)ζk−1 × fkB

(
ys

ζ

)
dζ,
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where |s| < cκ|aα∗,i∗ |−1/(i∗+1)r1, cκ = (1/κ)1/κ and

fkB(X) =
∑

n≥0

Ak(n+ k)
Xn+k

Γ(1 + (n+ k)/κ)
.

We remark that fkB(X) has (i∗ + 1) singular points in X plane by Lemma 5.3.
Therefore, we see that fkB(ys/ζ) has (i∗ + 1) singular points in ζ plane which are
given by

ζn(s) := c−1
κ a

1/(i∗+1)
α∗,i∗ ysωn

i∗+1 (n = 0, 1, . . . , i∗).

For a fixed s with arg s = d, we have for n = 0, 1, . . . , i∗

arg ζn(s) = d+
arg aα∗,i∗ + 2πn

i∗ + 1
= dn.

We consider the situation that |s| becomes bigger along arg s = d. In this case, we
split the path of integral into (i∗+1) arcs γI and (i∗+1) arcs ΓI (I = 1, 2, . . . , i∗+1),
where each γI consists of the arc between points of argument dI − ε/3 and dI + ε/3,
and each ΓI consists of the arc between points of argument dI + ε/3 and dI+1 − ε/3
with di∗+2 = d1. Since ϕ(x) is analytic in ∪i∗

j=0S(dj , ε), we can deform γI into paths
γI,r(s) which are taken along the ray arg ζ = dI − ε/3 to a point with the modulus
r(s) = cy|s|(sin(ε/3) + 1) (c is some constant), then along the circle |ζ| = r(s) to the
ray arg ζ = dI + ε/3 and back along this ray to the original arc. Therefore, we have

(uk)B(s, x) =

i∗+1∑

I=1

1

2πi

1∫

0

(1− y)k−1y−k

(k − 1)!
dy

{∫

ΓI

+

∫

γI,r(s)

}
ϕ(x+ ζ)ζk−1fkB(ys/ζ)dζ.

From the assumptions for the Cauchy data and Lemma 5.3, we obtain the analytic
continuation into S(d, ε̃) × B(σ) for some positive ε̃ and σ. The desired exponential
growth estimate of (uk)B(s, x) is obtained by the following calculation.

max
|x|≤σ

|(uk)B(s, x)|

≤ 1

2π

1∫

0

(1− y)k−1y−k

(k − 1)!
dy

× Cϕe
δϕ|s|κ × max

r1≤|ζ|≤r(s)
|ζ|k−1 × Ck

∣∣∣∣
ys

ζ

∣∣∣∣
k

eδf |s|
κ ×

i∗+1∑

I=1

c(sin(ε/3) + 1)y|s|

≤ {const} × K̂k|s|k+1eδ̃|s|
κ

1∫

0

(1− y)k−1y

(k − 1)!
dy (δ̃ > δϕ + δf )

≤ {const}K̂k |s|k
k!

eδ|s|
κ

(δ > δ̃).

We remark that when k = 0, we obtain the similar estimate with the above one for
(u0)B(s, x).
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8. PROOF OF LEMMA 5.3

We shall give the proof of Lemma 5.3. For the purpose, we will obtain the convolution
equations of fkB . After that, we will prove Lemma 5.3 by employing the method of
successive approximation for the convolution equations.

8.1. A CANONICAL FORM FOR DIFFERENTIAL EQUATION OF f̂k

First, we reduce the differential equation of f̂k(t) for each k to a certain canonical
form (cf. [4]).

In the case k = 0, we know that f̂0(t) satisfies the following differential equation

(L0 − 1)f̂0(t) :=

(∑

K0

aαit
i+1[δt + i]i − 1

)
f̂0(t) = −1, (8.1)

where K0 = {(α, i); 0 ≤ i ≤ i∗, α = i+1} and δt = t(d/dt) denotes the Euler operator.

Lemma 8.1. We have

[δt + i]i =

i∑

ℓ=0

diℓδ
ℓ
t , (8.2)

where d00 = 1 and

di,ℓ = di−1,ℓ−1 + idi−1,ℓ, 0 ≤ ℓ ≤ i

with di−1,−1 = di−1,i = 0. Then dii = 1, di,0 = i!.

By using this lemma, we write the operator L0 into the following form

L0 =

i∗∑

i=0

ai+1,it
i+1

i∑

ℓ=0

diℓδ
ℓ
t =

i∗∑

i=0

ai+1,idi0t
i+1 +

i∗∑

i=1

ai+1,it
i+1

i∑

ℓ=1

diℓδ
ℓ
t .

Lemma 8.2. We have

tκnδnt =

n∑

ℓ=1

Dnℓ(t
κ)n−ℓ(tκδt)

ℓ, (8.3)

where D11 = 1 and

Dnℓ = −κℓDn−1,ℓ +Dn−1,ℓ−1, 1 ≤ ℓ ≤ n

with Dn−1,n = 0 (n ≥ 1) and Dn−1,0 =

{
1 (n = 1)

0 (n ≥ 2)
. Then we have Dnn = 1.
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By using Lemma 8.2, we have

L0 =

i∗∑

i=0

ai+1,ii!t
i+1 +

i∗∑

i=1

ai+1,it
i+1

i∑

ℓ=1

diℓt
−κℓ · tκℓδℓt (∵ di0 = i!)

=

i∗∑

i=0

ai+1,ii!t
i+1 +

i∗∑

i=1

ai+1,it
i+1

i∑

ℓ=1

diℓt
−κℓ ·

ℓ∑

m=1

Dℓm(tκ)ℓ−m(tκδt)
m

=

i∗∑

i=0

ai+1,ii!t
i+1 +

i∗∑

i=1

ai+1,it
i+1

i∑

m=1

i∑

ℓ=m

diℓDℓmt−κm(tκδt)
m.

Here by putting

Dim :=
i∑

ℓ=m

diℓDℓm,

we have

L0 =

i∗∑

i=0

ai+1,ii!t
i+1 +

i∗∑

i=1

ai+1,it
i+1

i∑

m=1

Dimt−κm(tκδt)
m

=

i∗∑

i=0

ai+1,ii!t
i+1 +

i∗∑

m=1

i∗∑

i=m

ai+1,iDimti+1−κm(tκδt)
m.

We put

A[0]
m (t) :=

i∗∑

i=m

ai+1,iDimti+1−κm (0 ≤ m ≤ i∗).

Then we notice that

A
[0]
0 (t) =

i∗∑

i=0

ai+1,iDi0t
i+1 =

i∗∑

i=0

ai+1,ii!t
i+1,

A
[0]
i∗ (t) = ai∗+1,i∗Di∗i∗t

i∗+1−κi∗ = ai∗+1,i∗ ,

because of

Di0 =

i∑

ℓ=0

diℓDℓ0 = di0D00 = i!,

Di∗i∗ = di∗i∗Di∗i∗ = 1 and i∗ + 1− κi∗ = 0.

Therefore, since

L0 = ai∗+1,i∗(t
κδt)

i∗ +

i∗−1∑

m=0

A[0]
m (t)(tκδt)

m, (8.4)
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we can write the differential equation of f̂0(t) into the following form

[
ai∗+1,i∗(t

κδt)
i∗ − 1

]
f̂0(t) = −1−

i∗−1∑

m=0

A[0]
m (t)(tκδt)

mf̂0(t). (8.5)

Finally, we substitute f̂0(t) = 1 + f̃0(t) into the above equation. After some calcu-
lations, we replace f̃0 by f̂0. Then we obtain the following canonical form for the
differential equation of f̂0

[
ai∗+1,i∗(t

κδt)
i∗ − 1

]
f̂0(t) = −A

[0]
0 (t)−

i∗−1∑

m=0

A[0]
m (t)(tκδt)

mf̂0(t). (8.6)

In the case k ≥ 1, we know that f̂k(t) satisfies the following equation for each k

(∑

K0

aαit
i+1[δt + i]i − 1

)
f̂k(t) = −

min{i∗+1,k}∑

j=1

∑

Kj

aαit
i+1[δt + i]if̂k−j(t)

=: −
min{i∗+1,k}∑

j=1

Lj f̂k−j(t),

(8.7)

where Kj = {(α, i); j − 1 ≤ i ≤ i∗, α = i+ 1− j}. Similarly, with the case k = 0, we
get the following

Lj =

i∗∑

i=j−1

ai+1−j,it
i+1[δt + i]i =

i∗∑

i=j−1

ai−j+1,ii!t
i+1 +

i∗∑

i=j−1

ai−j+1,it
i+1

i∑

ℓ=1

diℓδ
ℓ
t

=

i∗∑

i=j−1

ai−j+1,ii!t
i+1

+





j−1∑

m=1

i∗∑

i=j−1

+

i∗∑

m=j

i∗∑

i=m



 ai−j+1,iDi,mti+1−κm(tκδt)

m.

Here for j = 1, 2, . . . , i∗ + 1, we put

A[j]
m (t) :=





i∗∑

i=j−1

ai−j+1,iDi,mti+1−κm, 0 ≤ m ≤ j − 1,

i∗∑

i=m

ai−j+1,iDi,mti+1−κm, j ≤ m ≤ i∗

and for j ≥ i∗ + 2 we define A
[j]
m (t) ≡ 0 for each m. Then we notice that

A
[j]
0 (t) =

i∗∑

i=j−1

ai−j+1,ii!t
i+1, A

[j]
i∗ (t) = ai∗−j+1,i∗ .
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Therefore, we obtain the following canonical form for the differential equation of f̂k

[
ai∗+1,i∗(t

κδt)
i∗ − 1

]
f̂k(t) = −

i∗−1∑

m=0

A[0]
m (t)(tκδt)

mf̂k(t)

−
min{i∗+1,k}∑

j=1

i∗∑

m=0

A[j]
m (t)(tκδt)

mf̂k−j(t).

(8.8)

For 1 ≤ k ≤ i∗+1, we substitute f̂0(t) = 1+ f̃0(t) into the above equation. After some
calculations we replace f̃0(t) by f̂0(t). Then we have the following canonical form

[
ai∗+1,i∗(t

κδt)
i∗ − 1

]
f̂k(t) = −

i∗−1∑

m=0

A[0]
m (t)(tκδt)

mf̂k(t)

−A
[k]
0 (t)−

k∑

j=1

i∗∑

m=0

A[j]
m (t)(tκδt)

mf̂k−j(t).

(8.9)

8.2. CONVOLUTION EQUATIONS

We shall obtain the convolution equations by operating the Borel transform to the
canonical differential equations which are obtained in the previous subsection.

In the case k = 0, after operating the formal κ-Borel transformation to the equa-
tion (8.6) and differentiating the both sides, we substitute Dsf0B(s) = w0(s) or

f0B(s) = D−1
s w0(s), where Ds = d/(ds) and D−1

s =
s∫
0

. Then the convolution equation

for w0(s) is given by the following expression
[
κi∗ai∗+1,i∗s

i∗+1 − 1
]
w0(s)

= Ds

[
−A

[0]
0B(s)−

i∗−1∑

m=0

A
[0]
mB(s) ∗κ D−1

s κmsκmw0(s)

]
,

(8.10)

where A
[0]
mB(s) = (BκA

[0]
m )(s) for 0 ≤ m ≤ i∗ − 1.

Here the κ-convolution a(s)∗κ b(s) with a(0) = b(0) = 0 is defined by the following
integral

(a ∗κ b)(s) =

s∫

0

a

(
(sκ − uκ)1/κ

)
d

du
b(u)du. (8.11)

We remark that if a(0) = b(0) = 0, the convolution is commutative. Note that this
formula is same with that in [1, Sec. 5.3] although the expression is a little different
from it.

We put
A∗(s) := 1− κi∗ai∗+1,i∗s

i∗+1.
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Similarly, in the case k ≥ 1, after the formal κ-Borel transformation to
the equations (8.9) and (8.8) and differentiating the both sides, we substitute
DsfkB(s) = wk(s) or fkB(s) = D−1

s wk(s). Then for each k, the convolution equation
for wk(s) is given by the following expression

[−A∗(s)]wk(s) = Ds

[
−A

[k]
0B(s)−

i∗−1∑

m=0

A
[0]
mB(s) ∗κ D−1

s κmsκmwk(s)

−
min{i∗+1,k}∑

j=1

i∗−1∑

m=0

A
[j]
mB(s) ∗κ D−1

s κmsκmwk−j(s)

−
min{i∗+1,k}∑

j=1

ai∗−j+1,i∗D
−1
s κi∗si∗+1wk−j(s)

]
,

(8.12)

where A
[j]
mB(s) = (BκA

[j]
m )(s) for 0 ≤ m ≤ i∗ − 1, 1 ≤ j ≤ i∗ + 1.

We put

T0(w0)(s) :=
−1

A∗(s)

(
the right hand side of (8.10)

)
,

Tk(wk)(s) :=
−1

A∗(s)

(
the right hand side of (8.12)

)
.

Then we remark that for all k

Tk : C[[s]] → C[[s]],

where C[[s]] denotes the set of formal power series. Therefore, for all k, the function

wk(s) = DsfkB(s) = Ds

∑

n≥0

Ak(n)s
n/Γ(1 + n/κ)

is a unique holomorphic solution in a neighborhood of origin for the convolution
equation (8.10) or (8.12).

8.3. PROOF OF LEMMA 5.3

In this subsection, we shall show that wk(s) has the exponential growth estimate of
order at most κ in a sector with infinite radius. Therefore, fkB(s) = D−1

s wk(s) also has
the same exponential growth estimate as that of wk(s). For the purpose, we employ the
method of successive approximation for the convolution equation wk(s) = Tk(wk)(s)
(cf. [5]).
Case 1. k = 0. We define the functions {w0n(s)} by the following





w00(s) =
1

A∗(s)
Ds

[
A

[0]
0B(s)

]
,

w0n(s) =
1

A∗(s)
Ds

[
i∗−1∑

m=0

A
[0]
mB(s) ∗κ D−1

s κmsκmw0,n−1(s)

]
(n ≥ 1).
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Case 2. k ≥ 1. We define the functions {wkn(s)} by the following




wk0(s) =
1

A∗(s)
Ds


A[k]

0B(s) +

min{i∗+1,k}∑

j=1

ai∗−j+1,i∗D
−1
s κi∗si∗+1wk−j,0(s)


 ,

wkn(s) =
1

A∗(s)
Ds

[
i∗−1∑

m=0

A
[0]
mB(s) ∗κ D−1

s κmsκmwk,n−1(s)

+

min{i∗+1,k}∑

j=1

i∗−1∑

m=0

A
[j]
mB(s) ∗κ D−1

s κmsκmwk−j,n−1(s)

+

min{i∗+1,k}∑

j=1

ai∗−j+1,i∗D
−1
s κi∗si∗+1wk−j,n(s)


 (n ≥ 1).

Then wk(s) =
∑

n≥0 wkn(s) is the convergent power series solution of the convolution
equation wk(s) = Tk(wk)(s).

For sufficiently small r, we put

S(r) := S(θ, ε0) \ {|s| < r},

where θ 6≡ −(arg ai∗+1,i∗ + 2πj)/(i∗ + 1) (mod 2π) with j = 0, 1, . . . , i∗.
We assume that for s ∈ S(r),
∣∣∣∣

1

A∗(s)

∣∣∣∣ ≤
B1

1 + |s|i∗+1
,
∣∣∣DsA

[j]
mB(s)

∣∣∣ ≤ B2|s|i∗−κm, |ai∗−j+1,i∗ | ≤ B2,

|s|i∗
1 + |s|i∗+1

≤ B3

(8.13)

with some positive constants B1 B2 and B3 for 0 ≤ m ≤ i∗ − 1, 0 ≤ j ≤ i∗ + 1.

Then the following proposition holds.

Proposition 8.3. For each k, we have wkn(s) ∈ O(S(r)) for all n and

|wkn(s)| ≤ CkK
n |s|n+k

Γ
(
n+1
κ

) , s ∈ S(r), (8.14)

where C0 = B1B2B3Γ(1/κ) and Ck = βkC0 with

β = 2

(
1

r
+B1B2B3κ

i∗

)

and K is a positive constant such that

2i∗(i∗ + 2)B1B2B3Γ(1 + 1/κ)κi∗−1Γ(i∗) < K. (8.15)
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We remark that Ck and Ck−1 satisfy the following recurrence formula
(
1

r
+B1B2B3κ

i∗

)
Ck−1 =

1

2
Ck(< Ck). (8.16)

This proposition means that wk(s) has the exponential growth estimate of order at
most κ in S(θ, ε0). Therefore, Lemma 5.3 follows from this proposition immediately.

8.4. PROOF OF PROPOSITION 8.3

We shall prove Proposition 8.3 by induction on k and n.
First, we notice that for functions A(s) and W (s) with A(0) = 0

Ds

(
A(s) ∗κ D−1

s W (s)

)
= Ds

s∫

0

A

(
(sκ − uκ)1/κ

)
W (u)du

= sκ−1

s∫

0

DsA

(
(sκ − uκ)1/κ

)
(sκ − uκ)1/κ−1W (u)du

= s

1∫

0

DsA

(
s(1− tκ)1/κ

)
(1− tκ)1/κ−1W (st)dt (u = st).

(8.17)

Case 1. k = 0.
When n = 0, from (8.13) we have

|w00(s)| ≤
B1

1 + |s|i∗+1
·B2|s|i∗ ≤ B1B2B3 =

C0

Γ(1/κ)
.

When n ≥ 1, by (8.17) and the induction assumption we have

|w0n(s)| ≤
B1

1 + |s|i∗+1

{
i∗−1∑

m=0

|s|

×
1∫

0

B2

∣∣∣s(1− tκ)1/κ
∣∣∣
i∗−κm

(1− tκ)1/κ−1κm|st|κmC0K
n−1 |st|n−1

Γ(n/κ)
dt





≤ B1B2|s|i∗
1 + |s|i∗+1

C0K
n−1 |s|n

Γ(n/κ)

i∗−1∑

m=0

κm

1∫

0

(1− tκ)i∗/κ+1/κ−m−1tκm+n−1dt.

Next, we have the following formula

1∫

0

(1− tκ)p−1tq−1dt =
1

κ
B
(
p,

q

κ

)
=

1

κ

Γ(p)Γ(q/κ)

Γ(p+ q/κ)
.
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By noticing (i∗ + 1)/κ = i∗, we have

|w0n(s)| ≤ B1B2B3C0K
n−1 |s|n

Γ(n/κ)

1

κ

{
i∗−1∑

m=0

κmΓ(i∗ −m)Γ(m+ n/κ)

Γ(i∗ + n/κ)

}
.

Lemma 8.4. We have

1

Γ(n/κ)
≤

n
κΓ(1/κ)

Γ(n+1
κ )

, (8.18)

Γ(p+ c)

Γ(q + c)
=

1

[q − 1 + c]q−p
, (8.19)

where κ > 1, p, q ∈ N with p < q and c > 0.

The formula (8.18) is obtained by the lower estimate of B(n/κ, 1/κ) and the
formula (8.19) is obtained from the formula Γ(1 + z) = zΓ(z).

By using Lemma 8.4, we have the following inequalities for 0 ≤ m ≤ i∗ − 1

1

Γ(n/κ)
· Γ(m+ n/κ)

Γ(i∗ + n/κ)
≤

n
κΓ(1/κ)

Γ(n+1
κ )

· 1

[i∗ − 1 + n/κ]i∗−m
≤ Γ(1/κ)

Γ(n+1
κ )

.

Therefore, we get

|w0n(s)| ≤ B1B2B3C0K
n−1 |s|n

Γ((n+ 1)/κ)

Γ(1/κ)

κ

{
i∗−1∑

m=0

κmΓ(i∗ −m)

}

≤ C0K
n |s|n
Γ((n+ 1)/κ)

.

For the last inequality, we used the following inequality

B1B2B3
Γ(1/κ)

κ

i∗−1∑

m=0

κmΓ(i∗ −m) < K,

which follows from (8.15). This means that Proposition 8.3 is proved in the case k = 0.

Case 2. k ≥ 1. We assume that (8.14) holds up to k − 1.
When n = 0, from (8.13) we have

|wk0(s)| ≤
B1

1 + |s|i∗+1



B2|s|i∗ +

min{i∗+1,k}∑

j=1

B2κ
i∗ |s|i∗+1Ck−j

|s|k−j

Γ(1/κ)





≤ B1B2B3
|s|k

Γ(1/κ)



Γ(1/κ)|s|−k + κi∗

min{i∗+1,k}∑

j=1

Ck−j |s|1−j



 .
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When 1 ≤ k ≤ i∗ + 1, we have by noting |s| ≥ r

B1B2B3Γ(1/κ)
1

rk
+B1B2B3κ

i∗
k∑

j=1

Ck−j
1

rj−1

= C0
1

rk
+B1B2B3κ

i∗

(
C0

1

rk−1
+ C1

1

rk−2
+ . . .+ Ck−1

)

=
1

rk−1

(
1

r
+B1B2B3κ

i∗

)
C0 +B1B2B3κ

i∗

(
C1

1

rk−2
+ . . .+ Ck−2

1

r
+ Ck−1

)

<
1

rk−1
C1 +B1B2B3κ

i∗

(
C1

1

rk−2
+ . . .+ Ck−2

1

r
+ Ck−1

)
(∵ (8.16))

=
1

rk−2

(
1

r
+B1B2B3κ

i∗

)
C1 +B1B2B3κ

i∗

(
C2

1

rk−3
+ . . .+ Ck−2

1

r
+ Ck−1

)

<
1

rk−2
C2 +B1B2B3κ

i∗

(
C2

1

rk−3
+ . . .+ Ck−2

1

r
+ Ck−1

)
. (∵ (8.16))

By repeating such calculation, we get

B1B2B3Γ(1/κ)
1

rk
+B1B2B3κ

i∗
k∑

j=1

Ck−j
1

rj−1
< Ck.

When k ≥ i∗ + 2, by using the relation

C0
1

rp
< Cp (p ∈ N),

we have

B1B2B3Γ(1/κ)
1

rk
+B1B2B3κ

i∗
i∗+1∑

j=1

Ck−j
1

rj−1

= C0
1

rk
+B1B2B3κ

i∗
i∗+1∑

j=1

Ck−j
1

rj−1

< Ck−i∗−1
1

ri∗+1
+B1B2B3κ

i∗

(
Ck−i∗−1

1

ri∗
+ Ck−i∗

1

ri∗−1
+ . . .+ Ck−1

)

=
1

ri∗

(
1

r
+B1B2B3κ

i∗

)
Ck−i∗−1 +B1B2B3κ

i∗(Ck−i∗
1

ri∗−1
+ . . .+ Ck−1)

< . . . < Ck.

Therefore, we have

|wk0(s)| ≤ Ck
|s|k

Γ(1/κ)
.
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When n ≥ 1, we put

wkn(s)=
1

A∗(s)
Ds

[
i∗−1∑

m=0

A
[0]
mB(s) ∗κ D−1

s κmsκmwk,n−1(s)

+

min{i∗+1,k}∑

j=1

i∗−1∑

m=0

A
[j]
mB(s) ∗κ D−1

s κmsκmwk−j,n−1(s)

+

min{i∗+1,k}∑

j=1

ai∗−j+1,i∗D
−1
s κi∗si∗+1wk−j,n(s)




=:
1

A∗(s)





i∗−1∑

m=0

I1,m(s) +

min{i∗+1,k}∑

j=1

i∗−1∑

m=0

I2,j,m(s) +

min{i∗+1,k}∑

j=1

I3,j(s)



 .

(8.20)

We use the formula (8.17). For 0 ≤ m ≤ i∗ − 1, we have
∣∣∣∣
I1,m(s)

A∗(s)

∣∣∣∣ ≤
B1

1 + |s|i∗+1

× |s|
1∫

0

B2

∣∣∣s(1− tκ)1/κ
∣∣∣
i∗−κm

(1− tκ)1/κ−1κm|st|κmCkK
n−1 |st|n−1+k

Γ(n/κ)
dt

≤ B1B2B3CkK
n−1 |s|n+k

Γ(n/κ)
κm

1∫

0

(1− tκ)i∗/κ−m+1/κ−1tκm+n+k−1dt

= B1B2B3CkK
n−1 |s|n+k

Γ(n/κ)
κm−1Γ(i∗ −m)Γ(m+ (n+ k)/κ)

Γ(i∗ + (n+ k)/κ)
.

By using Lemma 8.4, we have
∣∣∣∣
I1,m(s)

A∗(s)

∣∣∣∣ ≤ B1B2B3CkK
n−1 |s|n+k

Γ((n+ 1)/κ)

Γ(1/κ)

κ
κmΓ(i∗ −m).

For 1 ≤ j ≤ min{i∗ + 1, k} and 0 ≤ m ≤ i∗ − 1, we have

∣∣∣∣
I2,j,m(s)

A∗(s)

∣∣∣∣≤
B1

1 + |s|i∗+1
|s|

1∫

0

B2

∣∣∣s(1− tκ)1/κ
∣∣∣
i∗−κm

(1− tκ)1/κ−1κm|st|κm

× Ck−jK
n−1 |st|n−1+k−j

Γ(n/κ)
dt

≤ B1B2B3Ck−jK
n−1 |s|n+k−j

Γ(n/κ)
κm

1∫

0

(1− tκ)i∗−m−1tκm+n+k−j−1dt

= B1B2B3Ck−jK
n−1 |s|n+k−j

Γ(n/κ)
κm−1Γ(i∗ −m)Γ(m+ (n+ k − j)/κ)

Γ(i∗ + (n+ k − j)/κ)
.
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By using Lemma 8.4, we have the following inequalities for 0 ≤ m ≤ i∗ − 1:
1

Γ(n/κ)

Γ(m+ (n+ k − j)/κ)

Γ(i∗ + (n+ k − j)/κ)

≤
n
κΓ(1/κ)

Γ(n+1
κ )

· 1

[i∗ − 1 + (n+ k − j)/κ]i∗−m
≤ Γ(1/κ)

Γ(n+1
κ )

.

Therefore, we obtain
∣∣∣∣
I2,j,m(s)

A∗(s)

∣∣∣∣ ≤ B1B2B3Ck−jK
n−1 |s|n+k−j

Γ((n+ 1)/κ)

Γ(1/κ)

κ
κmΓ(i∗ −m).

Since Ck−j
1
rj < Ck, we have
∣∣∣∣
I2,j,m(s)

A∗(s)

∣∣∣∣ ≤ B1B2B3CkK
n−1 |s|n+k

Γ((n+ 1)/κ)

Γ(1/κ)

κ
κmΓ(i∗ −m).

For 1 ≤ j ≤ min{i∗ + 1, k}, we have
∣∣∣∣
I3,j(s)

A∗(s)

∣∣∣∣ ≤
B1

1 + |s|i∗+1
B2κ

i∗ |s|i∗+1Ck−jK
n |s|n+k−j

Γ((n+ 1)/κ)

≤ B1B2B3κ
i∗Ck−jK

n |s|n+k+1−j

Γ((n+ 1)/κ)
.

Since B1B2B3κ
i∗Ck−i∗−1 < Ck−i∗ , we have

B1B2B3κ
i∗

min{i∗+1,k}∑

j=1

Ck−j
1

rj−1

< Ck−i∗
1

ri∗
+B1B2B3κ

i∗
(
Ck−i∗

1

ri∗−1
+ Ck−i∗+1

1

ri∗−2
+ . . .+ Ck−1

)

=
1

ri∗−1

(
1

r
+B1B2B3κ

i∗

)
Ck−i∗ +B1B2B3κ

i∗
(
Ck−i∗+1

1

ri∗−2
+ . . .+ Ck−1

)

<
1

ri∗−1
Ck−i∗+1 +B1B2B3κ

i∗
(
Ck−i∗+1

1

ri∗−2
+ . . .+ Ck−1

)

< . . . <
1

r
Ck−1 +B1B2B3κ

i∗Ck−1 =
1

2
Ck.

Therefore, we obtain
min{i∗+1,k}∑

j=1

∣∣∣∣
I3,j(s)

A∗(s)

∣∣∣∣ ≤
1

2
CkK

n |s|n+k

Γ((n+ 1)/κ)
.

Hence, we get

|wkn(s)| ≤ CkK
n−1 |s|n+k

Γ((n+ 1)/κ)

{
B1B2B3Γ(1 + 1/κ)

i∗−1∑

m=0

κmΓ(i∗ −m)

+B1B2B3Γ(1 + 1/κ)

i∗+1∑

j=1

i∗−1∑

m=0

κmΓ(i∗ −m) +
K

2



 .
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From the condition (8.15) for K we have

|wkn(s)| ≤ CkK
n |s|n+k

Γ((n+ 1)/κ)
.

Under the above observations, the proof of Proposition 8.3 is completed.

APPENDIX

A. A CLASS OF CAUCHY DATA FOR THE CONVERGENCE
OF FORMAL SOLUTIONS

A.1. RESULT

Let us consider the following Cauchy problem for a non-Kowalevskian equation with
time dependent coefficients in a neighborhood of t = 0,





∂tu(t, x) =
m∑

j=0

aj(t)∂
j
xu(t, x), am(t) 6≡ 0,

u(0, x) = ϕ(x) ∈ C{x},
(M1)

where aj(t) ∈ C{t}, the set of convergent series, and (t, x) ∈ C2.
The non-Kowalevskian condition means that m ≥ 2 and am(t) 6≡ 0. In this case,

it is known that the Cauchy-Kowalevski theorem does not hold at the origin, which
means that for a suitable data ϕ(x) ∈ C{x} the uniquely determined formal solution
of the problem (M1) u(t, x) =

∑∞
l=0 ul(x)t

l/l! (u0(x) = ϕ(x)) is divergent (cf. [10,15]).

In this appendix we characterize a class of Cauchy data ϕ(x) ∈ C{x}, for which
the formal solution of the Cauchy problem (M1) converges in t-variable at t = 0.

Let nj ∈ N be the order of zeros of aj(t) (∈ C{t}) at t = 0, that is,

aj(t) = tnj bj(t), bj(0) 6= 0.

For the modified order, we assume the following

m

nm + 1
= max

0≤j≤m

{
j

nj + 1

}
. (M2)

This is a generalization of the conditions (A-3)–(A-5). Then we shall prove the fol-
lowing proposition.

Proposition A. 1. Let m > 1. Then under the assumption (M2), the Cauchy prob-
lem (M1) is uniquely solvable in locally holomorphic functions in t-variable at t = 0
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if and only if the Cauchy data ϕ(x) is of Gevrey order at most 1/m which means
|ϕ(n)(0)| ≤ ABn(n!)1/m for some positive constants A and B, or an entire function
of exponential growth order at most m/(m− 1) that there exist C and δ > 0 such that

|ϕ(x)| ≤ Ceδ|x|
m/(m−1)

.

The technical condition (M2) is used only in the proof of the necessary part.
Therefore, the sufficient part does hold without any condition.

A.2. PROOF OF SUFFICIENT PART

The sufficient part is a special case of the result in [11, Theorem 1] by M. Miyake
which was studied from the most general framework. So we give here a direct and
short proof associated with the problem.

Definition of Banach space G
(σ)
x (Rt, Rx) (0 < σ < 1, Rt > 0, Rx > 0):

v(t, x) =
∑

l,n≥0

vl,n
tlxn

l!× n!
∈ G(σ)

x (Rt, Rx) ⇐⇒ ‖v‖(σ)Rt,Rx
:=
∑

l,n≥0

|vl,n|
(Rt)

l(Rx)
n

(l + σn)!
< ∞.

Note that for v(t, x) ∈ G
(σ)
x (Rt, Rx) we have for any fixed l ∈ N that |∂l

t∂
n
x v(0, 0)| =

|vl,n| ∼ (σn)! which means that ∂l
tv(0, x) is of Gevrey order σ in x-variable. Therefore,

it holds that |∂l
tv(0, x)| ≤ Ceδ|x|

1/(1−σ)

for some positive constants C and δ.

We shall prove that the problem (M1) is uniquely solvable for any Cauchy data
ϕ(x) ∈ G

(1/m)
x (Rt, Rx) by taking a small enough Rt for any fixed Rx.

For the proof we may assume that ϕ(x) ≡ 0 without loss of generality. Then by
putting v(t, x) = ∂tu(t, x) we have u(t, x) = ∂−1

t v(t, x) (∂−1
t :=

∫ t

0
), and the problem

(M1) (for a non homogeneous equation) is reduced into the unique solvability of the
following integro-differential equation in G

(1/m)
x (Rt, Rx).

v(t, x) =

m∑

j=0

aj(t)∂
j
x∂

−1
t v(t, x) + f(t, x), f(t, x) ∈ G(1/m)

x (Rt, Rx).

Then the assertion follows from the following lemma.

Lemma A. 2. Let us define an integro-differential operator L by

L :=

m∑

j=0

aj(t)∂
j
x∂

−1
t .

Then the operator norm of L on G
(1/m)
x (Rt, Rx) is estimated by

‖L‖ ≤ Rt

m∑

j=0

|aj |(Rt)R
−j
x ,
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where for a(t) =
∑∞

n=0 ant
n we define |a|(t) :=∑∞

n=0 |an|tn. This estimate shows that
for any fixed Rx > 0, L becomes a contraction operator on G

(1/m)
x (Rt, Rx) by taking

small Rt.

Proof. Let
g(t, x) =

∑

l,n≥0

gl,nt
lxn/l!× n! ∈ G(1/m)

x (Rt, Rx),

and put
f(t, x) = ti∂j

x∂
−1
t g(t, x).

Then

f(t, x) =
∑

l,n≥0

gl,n
tl+i+1xn−j

(l + 1)!× (n− j)!
=

∑

l≥i+1,n≥0

gl−i−1,n+j
l!

(l − i)!
× tlxn

l!× n!
.

This shows that

∥∥ti∂j
x∂

−1
t g

∥∥(1/m)

Rt,Rx
=

∑

l≥i+1,n≥0

|gl−i−1,n+j |
l!

(l − i)!

Rl
tR

n
x

(l + n/m)!

=
Ri+1

t

Rj
x

∑

l≥i+1,n≥0

|gl−i−1,n+j |
Rl−i−1

t Rn+j
x

((l − i− 1 + (n+ j)/m)!

× l!

(l − i)!

(l − i− 1 + (n+ j)/m)!

(l + n/m)!
.

Here we notice that

l!

(l − i)!

(l − i− 1 + (n+ j)/m)!

(l + n/m)!
≤ (l − i+ n/m− 1 + j/m)!

(l − i+ n/m)!
≤ 1,

by the assumption j ≤ m. This proves the following estimate for the operator norm

‖ti∂j
x∂

−1
t ‖ ≤ Ri+1

t

Rj
x

,

which implies Proposition A. 1.

A.3. PROOF OF THE NECESSITY

We follow the argument in [10, Sections 3-5], where the Cauchy data ϕ(x) ∈ C{x} was
constructed so that the formal solution of the Cauchy problem (M1) diverges under
the similar but weaker condition than (M2) for more general equation.

By the assumption (M2), we write the equation in the form

∂tu(t, x) =

k∑

i=1

cit
ni∂pi

x u(t, x) +

m∑

j=0

tlj bj(t)∂
j
xu(t, x),
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which satisfies ci ∈ C\{0}, 1 ≤ p1 < p2 < . . . < pk = m (m ≥ 2) and

p1
n1 + 1

= . . . =
pk

nk + 1
=

m

nm + 1
,

m

nm + 1
>

j

lj + 1
(0 ≤ j ≤ m).

Let the formal solution of the Cauchy problem (M1) be given by

u(t, x) =

∞∑

l=0

ul(x)
tl

l!
.

Then the coefficients {ul(x)}∞l=0 (u0(x) = ϕ(x)) are expressed in the form

ul(x) = Sl(∂x)ϕ(x), degξ Sl(ξ) ≤ l × m

nm + 1

(
= l

pk
nk + 1

)
.

More precisely, let us define L := {l = ∑k
i=1 li · (ni + 1) ; li ∈ N}. Then we easily

examine that

l 6∈ L =⇒ degξ(Sl(ξ)) < l × m

nm + 1
,

l ∈ L =⇒ degξ(Sl(ξ)) ≤ l × m

nm + 1
=

k∑

i=1

li · pi.

For l ∈ L, we put

Sl(∂x) = al ∂
l·m/(nm+1)
x + lower order term, al ∈ C.

Then the following recurrence formula for {al}l∈L can be obtained (cf. [10, Sec. 5,
(5.4)]):

al =
k∑

i=1

l!

l · (l − ni − 1)!
ci · al−ni−1, a0 = 1.

Then, in [10, Sec. 4, (4.7)], the existence of a subsequence {l(j)}∞j=0 ⊂ L (l(0) = 0)
with the following property was proved:

|al(j)| ≥ A
cj

{d(nk + 1)}qj × l(j)!

[l(j)/(nm + 1)]!
,

([r] denotes Gauss’ symbol for the integer part of r ∈ R) by some positive A, c and d
and qj . Here qj is indefinite but it satisfies qj ≤ [l(j)/(nm + 1)] ≤ l(j).

By admitting these facts, we construct a Cauchy data ϕ(x) of Gevrey order q with
1/m < q < 1 such that the formal solution of the Cauchy problem (M1) is divergent.

Let us define an entire function of Gevrey order q < 1 by

ϕ(x) =
∞∑

j=0

ei θj
xl(j)·m/(nm+1)

[
l(j)·m
nm+1 (1− q)

]
!
, θj ∈ R.
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Then we have

ul(j)(0) = Sl(j)(∂x)ϕ(x)|x=0 = ei θj al(j)

[
l(j)·m
nm+1

]
!

[
l(j)·m
nm+1 (1− q)

]
!
+ fj(θi ; 0 ≤ i ≤ j − 1),

where fj denotes a function depending on {θi}j−1
i=0 . We define the argument θj by

θj = arg(fj)− arg(al(j)).

Then we have

|ul(j)(0)| ≥ |al(j)|

[
l(j)·m
nm+1

]
!

[
l(j)·m
nm+1 (1− q)

]
!

≥ A
cj

{d(nk + 1)}qj × l(j)!

[l(j)/(nm + 1)]!

[
l(j)·m
nm+1

]
!

[
l(j)·m
nm+1 (1− q)

]
!
.

Hence, for the partial sum
∑∞

j=0 ul(j)(0)t
l(j)/l(j)!, by Stirling’s formula, for a small

positive constant ε we have

|ul(j)(0)|
l(j)!

≥ ε1+l(j) ×
[
l(j)

{
m

nm + 1
− 1

nm + 1
+

m

nm + 1
(q − 1)

}]
!

= ε1+l(j) ×
[
l(j)× mq − 1

nm + 1

]
!.

This shows that if q > 1/m the formal solution is divergent. This means that if
the Cauchy problem (M1) has always a convergent solution it is necessary that the
Cauchy data ϕ(x) is an entire function of Gevrey order ≤ 1/m which is equivalent
that ϕ(x) has exponential growth order at most m/(m− 1).

B. PROOF OF LEMMA 4.3

We give the proof of Lemma 4.3.
First, we put

Bk(n) =
Ak(n)

n!1/κ
.

Then by dividing the both sides of (R0) or (Rk) by (n + 1)!1/κ, {Bk(n)} satisfy the
following recurrence formula:

When k = 0, one has



B0(n+ 1) =

∑

K0

aαi[n]i
(n− i)!1/κ

(n+ 1)!1/κ
B0(n− i) (n ≥ 0),

B0(0) = 1.

(S0)
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When k ≥ 1, one has




Bk(n+ 1) =
∑

K0

aαi[n]i
(n− i)!1/κ

(n+ 1)!1/κ
Bk(n− i)

+

min{i∗+1,k}∑

j=1

∑

Kj

aαi[n]i
(n− i)!1/κ

(n+ 1)!1/κ
Bk−j(n− i) (n ≥ 0),

Bk(0) = 0.

(Sk)

Here we interpret as Bk(n) = 0 for all k if n < 0, and

K0 = {(α, i); 0 ≤ i ≤ i∗, α = i+ 1}

and
Kj = {(α, i); j − 1 ≤ i ≤ i∗, α = i+ 1− j}.

Next, we consider the majorant equations for {Bk(n)}. We note that

[n]i
(n− i)!1/κ

(n+ 1)!1/κ
≤ 1

(
i ≤ n, i∗ and κ =

i∗ + 1

i∗

)

and we put R := max{|aαi|}.
We define {Ck(n)} by the following recurrence formula:

When k = 0, we define C0(0) = 1 and for n ≥ 0

C0(n+ 1) = R

i∗∑

i=0

Ck(n− i).

When k ≥ 1, we define Ck(0) = 0 and for n ≥ 0

Ck(n+ 1) = R

i∗∑

i=0

Ck(n− i) +R

min{i∗+1,k}∑

j=1

i∗∑

i=j−1

Ck−j(n− i).

Here we interpret as Ck(n) = 0 for all k if n < 0. Then we obtain Ck(n) ≥ |Bk(n)|
for all k and n. Therefore it is enough to show that

Ck(n) ≤ ABn+k for all k and n, (B.1)

where A,B > 1 and we take B such that

R(i∗ + 1)(i∗ + 3) ≤ B.

Case 1. k = 0. It is trivial that the inequality (B.1) holds for n = 0. We assume that
the inequalities (B.1) holds up to n. Then we have

C0(n+ 1) = R

i∗∑

i=0

C0(n− i) ≤ R

i∗∑

i=0

ABn−i ≤ ABn ×R(i∗ + 1) ≤ ABn+1.
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Case 2. k ≥ 1. We assume that the inequalities (B.1) holds up to k − 1.
It is trivial that the inequality (B.1) holds for n = 0. We assume that the inequal-

ities (B.1) holds up to n. Then we have

Ck(n+ 1) = R

i∗∑

i=0

Ck(n− i) +R

min{i∗+1,k}∑

j=1

i∗∑

i=j−1

Ck−j(n− i)

≤ R

i∗∑

i=0

ABn+k−i +R

i∗+1∑

j=1

i∗∑

i=j−1

ABn+k−i−j

= ABn+k ×R

{ i∗∑

i=0

B−i +

i∗+1∑

j=1

i∗∑

i=j−1

B−i−j

}

≤ ABn+k ×R(i∗ + 1)(i∗ + 3) (∵ B > 1)

≤ ABn+1+k.
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