PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Torsion of functionally graded anisotropic linearly elastic circular cylinder

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The object of this paper is Saint-Venant torsion of functionally graded anisotropic linearly elastic circular cylinder. The class of anisotropy considered has at least one plane of elastic symmetry normal to the axis of the circular cylinder. The elastic coefficients have radial dependence only. Here, we give the solution of Saint-Venant torsion problem for circular cylinder made of functionally graded anisotropic linearly elastic materials.
Rocznik
Strony
413--426
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
  • University of Miskolc Institute of Applied Mechanics Hungary
autor
  • University of Miskolc Institute of Applied Mechanics Hungary
Bibliografia
  • 1. Arghavan S., Hematiyan M.R., Torsion of functionally graded hollow tubes, European Journal Mechanics A/Solids, 28(3): 551–559, 2008.
  • 2. Batra R.C., Torsion of a functionally graded cylinder, AIAA Journal, 44(6): 1363–1365, 2006.
  • 3. Dubigeon S., Torsional stiffness for circular orthotropic beams, AIAA Journal, 30(9): 2355–2357, 1992.
  • 4. Horgan C.O., Chan A.M., Torsion of functionally graded isotropic linearly elastic bars, Journal of Elasticity, 52(2): 181–199, 1999.
  • 5. Horgan C.O., On the torsion of functionally graded anisotropic linearly elastic bars, IMA Journal of Applied Mathematics, 72(5): 556–562, 2007.
  • 6. Lekhnitskii S.G., Torsion of anisotropic and non-homogeneous beams [in Russian], Nauka, Moscow, 1971.
  • 7. Lekhnitskii S.G., Theory of elasticity of an anisotropic body [in Russian], Mir. Publishers, Moscow, 1981.
  • 8. Lurje A.I., Theory of elasticity [in Russian], Fiz.-Mat. Lit., Moscow, 1970.
  • 9. Rand O., Rovenski V., Analytical methods in anisotropic elasticity with symbolic tools, Birkhauser, Boston, 2005.
  • 10. Rooney F.J., Ferrari M., Torsion and flexure of inhomogeneous elements, Composites Engineering, 5(7): 901–911, 1995.
  • 11. Shen H.S., Functionally graded materials. Nonlinear analysis of plates and shells, CRC Press, New York, 2009.
  • 12. Sokolnikoff I.S., Mathematical theory of elasticity, McGraw-Hill, New York, 1956.
  • 13. Suresh S.M., Fundamentals of functionally graded materials, IOM Communications Limited, London, 1998.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cb6edb7-1f01-45c3-a3d3-d97169407b2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.