PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On stability of trimmed sums

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables and let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of constants where 0 < bn ↑ ∞. Let Xn(1), Xn(2),…, Xn(n) be a rearrangement of X1,…, Xn such that |Xn(1)| ≥ |Xn(2)| ≥ … ≥ |Xn(n)|. Consider the sequence of weighted sums Tn = Σni=1 ai Xi, n ≥ 1, and, for fixed r ≥ 1, set T(r)n = Σni=1 ai Xi I(|Xi| ≤ |X(r+1)n|), n ≥ r + 1; i.e., T(r)n is the sum Tn minus the sum of the X(k)n’s multiplied by their corresponding coefficients for k = 1,…, r. The main results provide sufficient and, separately, necessary conditions for b−1n T(r)n − kn → 0 almost surely for some sequence of centering constans {kn, n ≥1}. The current work extends that of Mori [14], [15] wherein an ≡ 1.
Rocznik
Strony
153--172
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.
autor
  • Department of Mathematics, Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.
autor
  • Department of Statistics, University of Florida, Gainesville, Florida 32611, U.S.A.
Bibliografia
  • [1] A. Adler and A. Rosalsky, On the strong law of large numbers for normed weighted sums of i.i.d. random variables, Stochastic Anal. Appl. 5 (1987), pp. 467-483.
  • [2] V. Barnett and T. Lewis, Outliers in Statistical Data, 2nd edition, Wiley, Chichester, Great Britain, 1984.
  • [3] Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 3rd edition, Springer, New York 1997.
  • [4] S. Csörgő and G. Simons, A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games, Statist. Probab. Lett. 26 (1996), pp. 65-73.
  • [5] J. H. J. Einmahl and E. Haeusler, On the relationship between the almost sure stability of weighted empirical distributions and sums of order statistics, Probab. Theory Related Fields 79 (1988), pp. 59-74.
  • [6] W. Feller, An extension of the law of the iterated logarithm to variables without variance, J. Math. Mech. 18 (1968), pp. 343-355.
  • [7] H. Kesten, Convergences in distribution of lightly trimmed and untrimmed sums are equivalent, Math. Proc. Cambridge Philos. Soc. 113 (1993), pp. 615-638.
  • [8] H. Kesten and R. A. Maller, Ratios of trimmed sums and order statistics, Ann. Probab. 20 (1992), pp. 1805-1842.
  • [9] H. Kesten and R. A. Maller, Infinite limits and infinite limit points of random walks and trimmed sums, Ann. Probab. 22 (1994), pp. 1473-1513.
  • [10] H. Kesten and R. A. Maller, The effect of trimming on the strong law of large numbers, Proc. London Math. Soc. 71 (1995), pp. 441-480.
  • [11] P. Lévy, Propriétés asymptotiques des sommes de variables aléatoires indépendantes ou enchaînée, J. Math. Pures Appl. 14 (1935), pp. 347-402.
  • [12] R. A. Maller, Asymptotic normality of lightly trimmed means - a converse, Math. Proc. Cambridge Philos. Soc. 92 (1982), pp. 535-545.
  • [13] R. A. Maller, Relative stability of trimmed sums, Z. Wahrsch. Verw. Gebiete 66 (1984), pp. 61-80.
  • [14] T. Mori, The strong law of large numbers when extreme terms are excluded from sums, Z. Wahrsch. Verw. Gebiete 36 (1976), pp. 189-194.
  • [15] T. Mori, Stability for sums of i.i.d. random variables when extreme terms are excluded, Z. Wahrsch. Verw. Gebiete 40 (1977), pp. 159-167.
  • [16] T. Mori, On the limit distributions of lightly trimmed sums, Math. Proc. Cambridge Philos. Soc. 96 (1984), pp. 507-516.
  • [17] S. V. Nagaev, On necessary and sufficient conditions for the strong law of large numbers, Teor. Verojatnost. i Primenen. 17 (1972), pp. 609-618 (in Russian). English translation in: Theory Probab. Appl. 17 (1972), pp. 573-581.
  • [18] V. I. Pozdnyakov, On the strong law of large numbers lor reduced sums, Vestnik S.-Peterburg. Univ. Mat. Mekh. Astronom., vyp. 2 (1994), pp. 20-25 (in Russian). English translation in: Vestnik St. Petersburg Univ. Math. 27, No. 2 (1994), pp. 16-20.
  • [19] Yu. V. Prokhorov, An extremal problem in probability theory, Teor. Verojatnost. i Primenen. 4 (1959), pp. 211-214 (in Russian). English translation in: Theory Probab. Appl. 4 (1959), pp. 201-203.
  • [20] W. F. Stout, Almost Sure Convergence, Academic Press, New York 1974.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7caea4fe-8785-44b6-b2f5-bccd7071d69d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.