PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Composites based on polyvinyl alcohol, chitosan, and curcumin for wound healing applications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural polymers, like chitosan, collagen, and alginate, offer promising solutions for wound healing. Derived from natural sources, they exhibit biocompatibility and bioactivity, promoting tissue regeneration. These polymers can form scaffolds or dressings that accelerate wound closure while reducing infection risks. Their inherent properties make them promising options in the quest for effective wound care materials. In this work, composites based on polyvinyl alcohol (PVA), chitosan (Chi), and curcumin (Cur) were prepared. PVA, a synthetic water-soluble polymer, finds extensive use in biomedical and wound-healing applications. It is approved by the U.S. FDA for cosmetic, medical, and wound healing products. Chi, a polysaccharide, is widely used in biomedicine and possesses antibacterial properties. Both PVA and chitosan are biocompatible and exhibit good filming characteristics. Curcumin (Cur) with antibacterial and antioxidant properties is being explored for regenerative medicine. PVA, chitosan, and curcumin were blended. The structure was studied by FTIR, microscopic observations were done with optical and scanning electron microscopes, and the mechanical properties were assessed. FTIR revealed component interactions, while microscopy showed a flat film surface. The polymeric blend (PVA/Chi/Cur) had a Young’s modulus of 1.49 GPa, tensile strength of 47.69 MPa, stress value of 8.39 N, and 35.34% elongation at break. These properties make the blend suitable for consideration in wound healing applications.
Słowa kluczowe
Rocznik
Strony
10--16
Opis fizyczny
Bibliogr. 61 poz., tab., wykr., zdj.
Twórcy
  • Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
  • Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, Genoa 16146, Italy
  • Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
Bibliografia
  • [1] Gobi R., Babu R.S.: In-vitro study on chitosan/PVA incorporated with nickel oxide nanoparticles for wound healing application. Mater Today Commun. 34 (2023) 105154. https://doi.org/10.1016/J.MTCOMM.2022.105154
  • [2] Marin E., Rojas J., Ciro Y.: A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical & biomedical applications. Afr J Pharm Pharmacol. 8, (2014) 674-684. https://doi.org/10.5897/AJPP2013.3906
  • [3] Razzak M.T., Darwis D., Zainuddin S.: Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiation Physics and Chemistry. 62 (2001) 107-113. https://doi.org/10.1016/S0969-806X(01)00427-3
  • [4] Jin S.G.: Production and Application of Biomaterials Based on Polyvinyl alcohol (PVA) as Wound Dressing. Chem Asian J. 17 (2022) e202200595. https://doi.org/10.1002/ASIA.202200595
  • [5] Hassan C.M., Peppas N.A.: Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Advances in Polymer Science. 153 (2000) 37-65.
  • [6] Haweel C.K., Ammar S.H.: Preparation of Polyvinyl Alcohol from Local Raw Material. Iraqi Journal of Chemical and Petroleum Engineering 9 (2008) 15-21.
  • [7] Tavakoli J., Mirzaei S., Tang Y.: Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications. Polymers 10 (2018) 305. https://doi.org/10.3390/POLYM10030305
  • [8] Murphy D.J., Sankalia M.G., Loughlin R.G., Donnelly R.F., Jenkins M.G., Mccarron P.A.: Physical characterisation and component release of poly(vinyl alcohol)-tetrahydroxyborate hydrogels and their applicability as potential topical drug delivery systems. Int J Pharm. 423 (2012) 326-334. https://doi.org/10.1016/J.IJPHARM.2011.11.018
  • [9] Gao T., Jiang M., Liu X., You G., Wang W., Sun Z., Ma A., Chen J.: Patterned Polyvinyl Alcohol Hydrogel Dressings with Stem Cells Seeded for Wound Healing. Polymers 11 (2019) 171. https://doi.org/10.3390/POLYM11010171
  • [10] Petroni S., Tagliaro I., Antonini C., D’Arienzo M., Orsini S.F., Mano J.F., Brancato V., Borges J., Cipolla L.: Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Marine Drugs 21 (2023) 147. https://doi.org/10.3390/MD21030147
  • [11] Choi C., Nam J.P., Nah J.W.: Application of chitosan and chitosan derivatives as biomaterials. Journal of Industrial and Engineering Chemistry. 33 (2016) 1-10. https://doi.org/10.1016/J.JIEC.2015.10.028
  • [12] Bai Q., Gao Q., Hu F., Zheng C., Chen W., Sun N., Liu J., Zhang Y., Wu X., Lu T.: Chitosan and hyaluronic-based hydrogels could promote the infected wound healing. Int J Biol Macromol. 232 (2023) 123271. https://doi.org/10.1016/J.IJBIOMAC.2023.123271
  • [13] Rinaudo M.: Chitin and chitosan: Properties and applications. Prog Polym Sci. 31 (2006) 603-632.
  • [14] Gocho H., Shimizu H., Tanioka A., Chou T.J., Nakajima T.: Effect of polymer chain end on sorption isotherm of water by chitosan. Carbohydr Polym. 41 (2000) 87 -90. https://doi.org/10.1016/S0144-8617(99)00113-7
  • [15] Azad A.K., Sermsintham N., Chandrkrachang S., Stevens W.F.: Chitosan membrane as a wound-healing dressing: Characterization and clinical application. J Biomed Mater Res B Appl Biomater. 69B (2004) 216-222. https://doi.org/10.1002/JBM.B.30000
  • [16] Campos E.V.R., Oliveira J.L., Fraceto L.F.: Poly(ethylene glycol) and cyclodextrin-grafted chitosan: From methodologies to preparation and potential biotechnological applications. Front Chem. 5 (2017) 290384. https://doi.org/10.3389/FCHEM.2017.00093/BIBTEX
  • [17] Berger J., Reist M., Mayer J.M., Felt O., Peppas N.A., Gurny R.: Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics. 57 (2004) 19-34. https://doi.org/10.1016/S0939-6411(03)00161-9
  • [18] Jayabal P., Kannan Sampathkumar V., Vinothkumar A., Mathapati S., Pannerselvam B., Achiraman S., Venkatasubbu G.D.: Fabrication of a Chitosan-Based Wound Dressing Patch for Enhanced Antimicrobial, Hemostatic, and Wound Healing Application. ACS Appl Bio Mater. 6 (2023) 615-627. https://doi.org/10.1021/ACSABM.2C00903
  • [19] Chopra H., Bibi S., Kumar S., Khan M.S., Kumar P., Singh I.: Preparation and Evaluation of Chitosan/PVA Based Hydrogel Films Loaded with Honey for Wound Healing Application. Gels 8 (2022) 111. https://doi.org/10.3390/GELS8020111
  • [20] Jayakumar R., Prabaharan M., Sudheesh Kumar P.T., Nair S.V., Tamura H.: Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 29 (2011) 322-337. https://doi.org/10.1016/J.BIOTECHADV.2011.01.005
  • [21] Deǧim Z., Çelebi N., Sayan H., Babül A., Erdoǧan D., Take G.: An investigation on skin wound healing in mice with a taurine--chitosan gel formulation. Amino Acids. 22 (2002) 187-198. https://doi.org/10.1007/S007260200007/METRICS
  • [22] Singh R., Shitiz K., Singh A.: Chitin and chitosan: biopolymers for wound management. Int Wound J. 14 (2017) 1276-1289. https://doi.org/10.1111/IWJ.12797
  • [23] Amor I.B., Emran T.B., Hemmami H., Zeghoud S., Laouini S.E.: Nanomaterials based on chitosan for skin regeneration: an update. Int J Surg. 109 (2023) 594-596. https://doi.org/10.1097/JS9.0000000000000181
  • [24] Paul W., Sharma C.P.: Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs. 18 (2004) 18-23.
  • [25] Sakthiguru N., Sithique M.A.: Fabrication of bioinspired chitosan/gelatin/allantoin biocomposite film for wound dressing application. Int J Biol Macromol. 152 (2020) 873-883. https://doi.org/10.1016/J.IJBIOMAC.2020.02.289
  • [26] Zhang H., Xu Y., Lei Y., Wen X., Liang J.: Tourmaline nanoparticles modifying hemostatic property of chitosan/polyvinyl alcohol hydrogels. Mater Lett. 324 (2022) 132718. https://doi.org/10.1016/J.MATLET.2022.132718
  • [27] Kanimozhi K., Khaleel Basha S., Sugantha Kumari V.: Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Materials Science and Engineering: C. 61 (2016) 484-491. https://doi.org/10.1016/J.MSEC.2015.12.084
  • [28] Aldakheel F.M., Mohsen D., El Sayed M.M., Alawam K.A., Binshaya A.K.S., Alduraywish S.A.: Silver Nanoparticles Loaded on Chitosan-g-PVA Hydrogel for the Wound-Healing Applications. Molecules 28 (2023) 3241. https://doi.org/10.3390/MOLECULES28073241
  • [29] Moeini A., Pedram P., Makvandi P., Malinconico M., Gomez d’Ayala G.: Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydr Polym. 233 (2020) 115839. https://doi.org/10.1016/J.CARBPOL.2020.115839
  • [30] Zhang X.H., Yin Z., Guo Y., Huang H., Zhou J.Y., Wang L., Bai J.Y., Fan Z.: A facile and large-scale synthesis of a PVA/chitosan/collagen hydrogel for wound healing. New Journal of Chemistry 44 (2020) 20776-20784. https://doi.org/10.1039/D0NJ04016A
  • [31] Zlotogorski A., Dayan A., Dayan D., Chaushu G., Salo T., Vered M.: Nutraceuticals as new treatment approaches for oral cancer - I: Curcumin. Oral Oncol. 49 (2013) 187-191. https://doi.org/10.1016/J.ORALONCOLOGY.2012.09.015
  • [32] Aggarwal B.B., Kumar A., Bharti A.C.: Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, (2003) 363-398.
  • [33] Pulido-Moran M., Moreno-Fernandez J., Ramirez-Tortosa C., Ramirez-Tortosa M.C.: Curcumin and Health. Molecules 21 (2016) 264. https://doi.org/10.3390/MOLECULES21030264
  • [34] Sharma R.A., Gescher A.J., Steward W.P.: Curcumin: The story so far. Eur J Cancer. 41 (2005) 1955-1968. https://doi.org/10.1016/J.EJCA.2005.05.009
  • [35] Devassy J.G., Nwachukwu I.D., Jones P.J.H.: Curcumin and cancer: barriers to obtaining a health claim. Nutr Rev. 73 (2015) 155-165. https://doi.org/10.1093/NUTRIT/NUU064
  • [36] Panchatcharam, M., Miriyala, S., Gayathri, V.S., Suguna, L.: Curcumin improves wound healing by modulating collagen and decreasing reactive oxygen species. Mol Cell Biochem. 290, (2006) 87-96.
  • [37] Joe B., Vijaykumar M., Lokesh B.R.: Biological Properties of Curcumin-Cellular and Molecular Mechanisms of Action. Crit Rev Food Sci Nutr. 44 (2010) 97-111. https://doi.org/10.1080/10408690490424702
  • [38] Rezkita F., Wibawa K.G.P., Nugraha A.P.: Curcumin loaded chitosan nanoparticle for accelerating the post extraction wound healing in diabetes mellitus patient: A review. Res J Pharm Technol. 13 (2020) 1039-1042. https://doi.org/10.5958/0974-360X.2020.00191.2
  • [39] Mohanty C., Sahoo S.K.: Curcumin and its topical formulations for wound healing applications. Drug Discov Today. 22 (2017) 1582-1592. https://doi.org/10.1016/J.DRUDIS.2017.07.001
  • [40] Barzegar A., Moosavi-Movahedi A.A.: Intracellular ROS Protection Efficiency and Free Radical-Scavenging Activity of Curcumin. PLoS One 6 (2011) e26012. https://doi.org/10.1371/JOURNAL.PONE.0026012
  • [41] Li F., Shi Y., Liang J., Zhao L.: Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model. J Biomater Appl. 34 (2019) 476-486. https://doi.org/10.1177/0885328219860929
  • [42] Alven S., Nqoro X., Aderibigbe B.A.: Polymer-Based Materials Loaded with Curcumin for Wound Healing Applications. Polymers 12 (2020) 2286. https://doi.org/10.3390/POLYM12102286
  • [43] Akbik D., Ghadiri M., Chrzanowski W., Rohanizadeh R.: Curcumin as a wound healing agent. Life Sci. 116 (2014) 1-7. https://doi.org/10.1016/J.LFS.2014.08.016
  • [44] Rezaei M., Oryan S., Reza Nourani M., Mofid M., Mozafari M.: Curcumin nanoparticle-incorporated collagen/chitosan scaffolds for enhanced wound healing. Bioinspired, Biomimetic and Nanobiomaterials 7 (2018) 159-166. https://doi.org/10.1680/JBIBN.17.00036
  • [45] Hassanizadeh S., Shojaei M., Bagherniya M., Orekhov A.N., Sahebkar A.: Effect of nano-curcumin on various diseases: A comprehensive review of clinical trials. BioFactors 49 (2023) 512-533. https://doi.org/10.1002/BIOF.1932
  • [46] Nagpal M., Sood S.: Role of curcumin in systemic and oral health: An overview. J Nat Sci Biol Med. 4 (2013) 3. https://doi.org/10.4103/0976-9668.107253
  • [47] Lewandowska K.: Surface studies of microcrystalline chitosan/poly(vinyl alcohol) mixtures. Appl Surf Sci. 263 (2012) 115-123. https://doi.org/10.1016/J.APSUSC.2012.09.011
  • [48] Lewandowska K., Sionkowska A., Kaczmarek B., Furtos G.: Characterization of chitosan composites with various clays. Int J Biol Macromol. 65 (2014) 534-541. https://doi.org/10.1016/J.IJBIOMAC.2014.01.069
  • [49] Mahesh B., Nanjundaswamy G.S., Kathyayani D., Gowda D.C., Siddaramaiah: Impact of Blend Proportion on the Miscibility and Thermal Characteristics of Synthetic Plastic-Derived Polypentapeptide with Commercially Available Polyvinyl Alcohol. J Polym Environ. 27 (2019) 2267-2280. https://doi.org/10.1007/S10924-019-01511-1/FIGURES/12
  • [50] Costa-Júnior E.S., Barbosa-Stancioli E.F., Mansur A.A.P., Vasconcelos W.L., Mansur H.S.: Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym. 76 (2009) 472-481. https://doi.org/10.1016/J.CARBPOL.2008.11.015
  • [51] Kulig D., Zimoch-Korzycka A., Jarmoluk A., Marycz K.: Study on Alginate-Chitosan Complex Formed with Different Polymers Ratio. Polymers 8 (2016) 167. https://doi.org/10.3390/POLYM8050167
  • [52] Mahmoud A.A., Osman O., Eid K., Al Ashkar E., Okasha A., Atta D., Eid M., Aziz Z.A., Fakhry A.: FTIR Spectroscopy of Natural Bio-Polymers Blends. Middle East Journal of Applied Sciences 4, (2014) 816-824.
  • [53] Pokhrel S., Lach R., Grellmann W., Wutzler A., Lebek W., Godehardt R., Yadav P.N., Adhikari R.: Synthesis of chitosan from prawn shells and characterization of its structural and antimicrobial properties. Nepal J Sci Technol. 17 (2016) 5-9.
  • [54] Wang T., Turhan M., Gunasekaran S.: Selected properties of pH-sensitive, biodegradable chitosan-poly (vinyl alcohol) hydrogel. Polym Int. 53 (2004) 911-918.
  • [55] Mansur H.S., Sadahira C.M., Souza A.N., Mansur A.A.P.: FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Materials Science and Engineering: C. 28 (2008) 539-548. https://doi.org/10.1016/J.MSEC.2007.10.088
  • [56] Mahesh B., Kathyayani D., Channe Gowda D., Mrutunjaya K.: Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple. Journal of Polymer Research 27 (2020) 1-15. https://doi.org/10.1007/S10965-020-02191-5/FIGURES/12
  • [57] Latif I.A., Abdullah H.M., Saleem M.H.: Hydrogel permittivity, Swelling, Hydrogel, Chitosan, Pectin, Poly (vinyl alcohol), Conductive hydrogel. American Journal of Polymer Science 6 (2016) 50-57. https://doi.org/10.5923/j.ajps.20160602.04
  • [58] Deshkulkarni B., Viannie L.R., Ganachari S.V, Banapurmath N.R., Shettar A.: Humidity sensing using polyaniline/polyvinyl alcohol nanocomposite blend. IOP Conf Ser Mater Sci Eng. 376 (2018) 1-8.
  • [59] El-Nemr K.F., Mohamed H.R., Ali M.A., Fathy R.M., Dhmees A.S.: Polyvinyl alcohol/gelatin irradiated blends filled by lignin as green filler for antimicrobial packaging materials. International Journal of Environmental Analytical Chemistry 100 (2019) 1578-1602. https://doi.org/10.1080/03067319.2019.1657108
  • [60] Ahali Abadeh Z., Saviano G., Ballirano P., Santonicola M.G.: Curcumin-loaded zeolite as anticancer drug carrier: effect of curcumin adsorption on zeolite structure. Pure and Applied Chemistry 92 (2020) 461-471. https://doi.org/10.1515/pac-2018-1213.
  • [61] Ismail E.H., Sabry D.Y., Mahdy H., Khalil M.M.H.: Synthesis and Characterization of some Ternary Metal Complexes of Curcumin with 1, 10-phenanthroline and their Anticancer Applications. Journal of Scientific Research 6 (2014) 509-519.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7cae438f-8b3f-4721-81e7-4eacdb704c4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.