Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The analysis included alluvial sediments in the Łapszanka Stream valley in the Spisz area (Carpathians, Southern Poland). Seven gravel levels were distinguished in the sedimentary sequence, which is a record of periods of intense fluvial activity correlated with wet climate phases. They fall in the Early Holocene (10 100–8900 y BP), the beginning of the Middle Holocene (7900–6600 y BP), the Middle Holocene (6100–5900 y BP), the beginning of the Late Holocene (5100–4000 y BP), the Iron Age Cold Epoch, the Dark Ages Cold Period and the Little Ice Age. The gravels are separated by layers of mud, containing an abundant mollusc fauna. It was possible to distinguish five types of fauna assemblages corresponding to the environmental changes in the Spisz area during the Holocene. The malacofauna indicates that forests covered this area to a large extent during almost the entire period analysed. During the Early Holocene, the area was dominated by coniferous forests, and the fauna contained numerous cold-tolerant taxa. The Middle Holocene saw the emergence of mixed forests inhabited by mollusc communities that included species with high ecological tolerance. A malacofauna containing moisture-loving forest assemblages is characteristic of the sediments of the Late Holocene. The occurrence of muds (agricultural muds) with open-country snails at the top of the sequence indicates increased anthropogenic impact and associated deforestation during the last 500 years.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
187--204
Opis fizyczny
Bibliogr. 12 poz., fot., map., rys., tab., wykr.
Twórcy
- AGH University of Krakow, Faculty of Geology, Geophysics and Environment Protection, Chair of General Geology and Geotourism, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- 1. Alexandrowicz, S. W., 1997b. Holocene dated landslides in the Polish Carpathians. In: Frenzel, B. (ed.), Rapid mass movement as a source of climatic evidence for the Holocene. Palaeoclimate Research, 19: 75-83.
- 2. Alexandrowicz, S. W. & Alexandrowicz, W. P., 2011. Analiza malakologiczna. Metody badań i interpretacji. Rozprawy Wydziału Przyrodniczego PAU, 3: 5-302. [In Polish.]
- 3. Alexandrowicz, W. P., 1997a. Malacofauna of Quaternary deposits and environmental changes of the Podhale Basin during the Late Glacial and Holocene. Folia Quaternaria, 68: 7-132. [In Polish, with English summary.]
- 4. Alexandrowicz, W. P., 2013a. Malacological sequence from profile of calcareous tufa in Groń (Podhale Basin, southern Poland) as an indicator of the Late Glacial/Holocene boundary. Quaternary International, 293: 196-206.
- 5. Alexandrowicz, W. P., 2013b. Molluscan assemblages in the deposits of landslide dammed lakes as indicators of late Holocene mass movements in the Polish Carpathians. Geomorphology, 180-181: 10-23.
- 6. Alexandrowicz, W. P., 2019a. Malacological evidence of the natural and anthropogenic changes of the environment in the eastern part of the Carpathian Foreland: the studies in the Glinne stream valley near Rzeszów (southern Poland). Carpathian Journal of Earth and Environmental Sciences, 14: 367-384.
- 7. Alexandrowicz, W. P., 2019b. Record of environmental changes and fluvial phases in the Late Holocene within the area of Podhale (the Carpathians, southern Poland): studies in the Falsztyński valley. Geological Quarterly, 63: 629-642.
- 8. Alexandrowicz, W. P., 2020. Development of settlements in Podhale Basin and Pieniny Mts. (western Carpathians, southern Poland) in light of malacological research. Carpathian Journal of Earth and Environmental Sciences, 15: 247-259.
- 9. Alexandrowicz, W. P., 2022. Molluscan assemblages in sediments of a landslide on Majerz Hill near Niedzica (Inner Carpathians, Southern Poland) - phases of development and environmental changes. Geology, Geophysics & Environment, 48: 51-68.
- 10. Alexandrowicz, W. P., 2023. Application of malacological analysis to reconstruct climate fluctuations and human activity during the Middle and Late Holocene. Research in the valley of the Grajcarek stream (Pieniny Mts., southern Poland). Acta Geologica Polonica, 73: 85-102.
- 11. Alexandrowicz, W. P. & Skoczylas, S., 2017. Molluscan assemblages from calcareous tufa in the Skalski Stream Valley (Pieniny Mountains, southern Poland) and their application for reconstruction of natural and anthropogenic environmental changes. Carpathian Journal of Earth and Environmental Sciences, 12: 583-594.
- 12. Alexandrowicz, W. P., Skoczylas-Śniaz, S. & Laskowska, P., 2023. Malacological indicators of anthropogenic and natural environmental changes of the Podhale Basin during the last 2000 years. Studies in the Rogoźnik Stream valley (the Carpathian Mountains, Southern Poland). Geology, Geophysics & Environment, 49: 261-280.
- 13. Alexandrowicz, W. P., Szymanek, M. & Rybska, E., 2014. Changes to the environment of intramontane basins in the light of malacological research of calcareous tufa: Podhale Basin (Carpathians, Southern Poland). Quaternary International, 353: 250-265.
- 14. Alexandrowicz, Z., Alexandrowicz, W. P. & Buczek, K., 2019. Conservation of the Natura 2000 Areas in the context of environmental changes in past and present: a case from the Polish Carpathians geoheritage. Geoheritage, 11: 517-529.
- 15. Benito, G., Macklin, M., Panin, A., Rossato, S., Fontana, A., Jones, A. F., Machado, M. J., Matlakhova, E., Mozzi, P. & Zielhofer, C., 2015. Recurring flood distribution patterns related to short-term Holocene climatic variability. Scientific Reports, 5, 16398: 1-8.
- 16. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I. & Bonani, G., 2001. Persistent solar influence on North Atlantic climate during the Holocene. Science, 294: 2130-2136.
- 17. Bronk Ramsey, C., 2017. Methods for summarizing radiocarbon datasets. Radiocarbon, 59: 1809-1833.
- 18. Dapples, F., Lotter, A. F., van Leeuven, J. F. N., van der Knapp, W. O., Dimitriadis, S. & Oswald, D., 2002. Palaeolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. Journal of Paleolimnology, 27: 239-248.
- 19. Dehm, R., 1967. Die landschnecke Discus ruderatus im Postglazial Süddeutschlands. Mitteilungen der Bayerische Staatssammlung für Paläontologie und Historische Geologie, 7: 135-155.
- 20. Dehm, R., 1987. Die landschnecke Discus perspectivus im Postglazial Südbayerns. Mitteilungen der Bayerische Staatssammlung für Paläontologie und Historische Geologie, 27: 21-30.
- 21. Demény, A., Kern, Z., Hatvani, I. G., Torma, C., Topál, D., Frisia, S., Leél-Ossy, S., Czuppon, G. & Surányi, G., 2021. Holocene hydrological changes in Europe and the role of the North Atlantic ocean circulation from a speleothem perspective. Quaternary International, 571: 1-10.
- 22. Frodlová, J. & Horsák, M., 2021. High-resolution mollusc record from the Mituchovci tufa (western Slovakia): a reference for the Holocene succession of Western Carpathian mid-elevation forests. Boreas, 50: 709-722.
- 23. Gębica, P., 2011. Stratigraphy of alluvial fills and phases of the Holocene floods in the lower Wisłok river. Geographia Polonica, Special Issue I: 39-60.
- 24. Gębica, P., 2013a. Chronostratigraphy of alluvia and age of fluvial landforms in the Carpathian Foreland during the Vistulian. Studia Quaternaria, 30: 19-27.
- 25. Gębica, P., 2013b. Geomorphological records of human activity reflected in fluvial sediments in the Carpathians and their foreland. Landform Analysis, 22: 21-31.
- 26. Gębica, P., Jacyszyn, A., Krąpiec, M., Budek, A., Czumak, N., Starkel, L., Andrejczuk, W. & Ridush, B., 2016. Stratigraphy of alluvia and phases of the Holocene floods in the valleys of the Eastern Carpathians foreland. Quaternary International, 415: 55-66.
- 27. Gębica, P. & Krąpiec, M., 2009. Young Holocene alluvia and dendrochronology of subfossil trunks in the San river valley. Studia Geomorphologica Carpatho-Balcanica, 43: 63-75.
- 28. Gedda, B., 2006. Terrestrial mollusc succession and stratigraphy of a Holocene calcareous tufa deposit from the Fyledalen valley, southern Sweden. The Holocene, 16: 137-147.
- 29. Granai, S., Dabkowski, J., Hájková, H., Naton, G-H. & Brou, L., 2020. Holocene palaeoenvironments from the Direndall tufa (Luxembourg) reconstructed from the molluscan succession and stable isotope records. The Holocene, 30: 982-995.
- 30. Hammer, Ø., Harper D. A. T. & Ryan P. D., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologica Electronica, 4: 1-9.
- 31. Helama, S., Jones, P. D. & Briffa, K. R., 2017. Dark Ages Cold Period: A literature review and directions for future research. The Holocene, 27: 1600-1606.
- 32. Hoffmann, T., Lang, A. & Dikau, R., 2008. Holocene river activity: analysing 14C-dated fluvial and colluvial sediments from Germany. Quaternary Science Reviews, 27: 2031-2040.
- 33. Holzhauser, H., Magny, M. & Zumbuühl, H. J., 2005. Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene, 15: 789-801.
- 34. Horáčková, J., Ložek, V. & Juřičková, L., 2015. List of malacologically treated Holocene sites with brief review of palaeomalacological research in the Czech and Slovak Republics. Quaternary International, 357: 207-211.
- 35. Horsák, M., Juřičkova, L. & Picka, J., 2013. Molluscs of the Czech and Slovak Republics. Nakladatelstvi Kabourek, Zlin. 264 pp.
- 36. Horsák, M., Limondin-Lozouet, N., Juřičková, L., Granai, S., Horáčková, J., Legentil, C. & Ložek, V., 2019. Holocene succession patterns of land snails across temperate Europe: East to west variation related to glacial refugia, climate and human impact. Palaeogeography, Palaeoclimatology, Palaeoecology, 524: 13-24.
- 37. Hrynowiecka, A., Żarski, M., Chmielowska, D., Pawłowska, K., Okupny, D., Michczyński, M. & Kukulak, K., 2022. Reconstruction of 26 kyrs palaeoenvironmental history of the Czarny Dunajec Fan - A multiproxy study of the Długopole gravel pit deposits (Western Carpathians, S Poland). Catena, 211: 105940.
- 38. Ivy-Ochs, S., Kerschner, H., Maisch, M., Christl, M., Kubik, P. W. & Schlüchter, Ch., 2009. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews, 28: 2137-2149.
- 39. Joerin, U. E., Stocker, T. F. & Schlüchter, Ch., 2006. Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene, 16: 697-904.
- 40. Juřičkova, L., Horsák, M., Horáčková, J. & Ložek V., 2014a. Ecological groups of snails - use and perspectives. European Malacological Congress, Cambridge, UK, poster. http://mollusca.sav.sk/malacology/Jurickova/2014-ecological-groupsposter.pdf
- 41. Juřičková, L., Horsák, M., Horáčková, J., Abraham, V. & Ložek, V., 2014b. Pattern of land-snail succession in Central Europe over the 15,000 years: Man changes along environmental, spatial and temporal gradients. Quaternary Science Reviews, 93: 155-166.
- 42. Juřičková, L., Šída, P., Horáčková, H., Ložek, V. & Pokorný, P., 2020. The lost paradise of snails: Transformation of the middle-Holocene forest ecosystems in Bohemia, Czech Republic, as revealed by declining land snail diversity. The Holocene, 30: 1254-1265.
- 43. Krąpiec, M., Margielewski, W., Korzeń, K., Szychowska-Krąpiec, E., Nalepka, D. & Łajczak, A., 2016. Late Holocene palaeoclimate variability: The significance of bog pine dendrochronology related to peat stratigraphy. The Puścizna Wielka raised bog case study (Orawa - Nowy Targ Basin, Polish Inner Carpathians). Quaternary Science Reviews, 148: 192-208.
- 44. Kudsk, S. G. K., Knudsen, M. F., Karoff, Ch., Baittinger, C., Misios, S. & Olsen, J., 2022. Solar variability between 650 CE and 1900 - Novel insights from a global compilation of new and existing high-resolution 14C records. Quaternary Science Reviews, 292: 107617.
- 45. Kulka, A., Rączkowski, W., Żytko, K. & Paul, Z., 1991. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50 000, Arkusz 1050 (Szczawnica-Krościenko). Wydawnictwa Geologiczne, Warszawa, 93 pp. [In Polish.]
- 46. Łajczak, A., Margielewski, W., Rączkowska, Z. & Święchowicz, J., 2014. Contemporary geomorphic processes in the Polish Carpathians under changing human impact. Episodes, 37: 21-32.
- 47. Limondin-Lozouet, N., 2011. Successions malacologiques a la charniėre Glaciaire/ Interglaciaire: du modele Tardiglaciaire-Holocėne aux transitions du Pleistocene. Quaternaire, 22: 211-220.
- 48. Limondin-Lozouet, N. & Preece, R. C., 2004. Molluscan successions from the Holocene tufa of St Germain-le-Vasson, Normandy (France) and their biogeographical significance. Journal of Quaternary Science, 19: 55-71.
- 49. Limondin-Lozouet, N. & Preece, R. C., 2014. Quaternary perspectives on the diversity of land snail assemblages from northwestern Europe. Journal of Molluscan Studies, 80: 224-237.
- 50. Ložek, V., 1964. Quartärmollusken der Tschechoslovakei. Rozpravy Ustředniho Ustavu Geologického, 31: 1-374.
- 51. Margielewski, W., 1998. Landslide phases in the Polish Outer Carpathians and their relation to the climatic changes in the Late Glacial and Holocene. Quaternary Studies in Poland, 15: 37-53.
- 52. Margielewski, W., 2018. Landslide fens as a sensitive indicator of paleoenvironmental changes since the Late Glacial: a case study of the Polish Western Carpathians. Radiocarbon, 60: 1199-1213.
- 53. Matthews, J. A. & Briffa, K. R., 2005. The ‘Little Ice Age': re-evaluation of an evolving concept. Geografiska Annaler, 87 A: 17-36.
- 54. Mauri, A., Davis, B. A. S., Kaplan, J. O. & Collins, P., 2015. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quaternary Science Reviews, 112: 109-127.
- 55. Mayewski, P. A., Rohling, E. E., Stager, J. C., Karlen, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R. & Steig, E. J., 2004. Holocene climate variability. Quaternary Research, 62: 243-255.
- 56. Meyrick, R. A., 2001. The development of terrestrial mollusc faunas in the ‘Rheinland region' (western Germany and Luxembourg) during the Late Glacial and Holocene. Quaternary Science Reviews, 16-17: 1667-1675.
- 57. Meyrick, R. A., 2002. Holocene molluscan faunal history and environmental change at Kloster Mühle, Rheinland-Pfalz, western Germany. Journal of Quaternary Science, 18: 121-132.
- 58. Morisita, M., 1959. Measuring of interspecific association and similarity between communities. Memories of the Faculty of Sciences, Kyushu University, E, 3: 65-80.
- 59. Nussbaumer, S. U., Steinhilber, F., Trachsel, M., Breitenmoser, P., Beer, J., Blass, A., Grosjean, M., Hafner, A., Holzhauser, H., Wanner, H. & Zumbühl H. J., 2011. Alpine climate during the Holocene: a comparison between records of glaciers, lake sediments and solar activity. Journal of Quaternary Science, 26: 703-713.
- 60. Obidowicz, A., 1990. Eine pollenanalytische und moorkundlische Studie zur Vegetationgeschichte des Podhale-Gebites (WestKarpaten). Acta Paleobotanica, 30: 147-219.
- 61. Olszak, J., Kukulak, J. & Alexanderson, H., 2019. Climate control on alluvial sediment storage in the northern foreland of the Tatra Mountains since the late Pleistocene. Quaternary Research, 91: 520-532.
- 62. Olszak, J., Kukulak, J., Alexanderson, H., Krąpiec, M., Thamó- Bozsó, E. & Ciurej, A., 2023. Luminescence and radiocarbon dates from alluvial sediments, Podhale, Central Europe - A methods comparison. Catena, 221, Part A: 106792.
- 63. Pánek, T., Šmolková, V, Hradecký, J., Baroò, I. & Šilhán, K., 2013. Holocene reactivations of catastrophic complex flowlike landslides in the Flysch Carpathians (Czech Republic/ Slovakia). Quaternary Research, 80: 33-46.
- 64. Persoiu, I. & Persoiu, A., 2019. Flood events in Transylvania during the Medieval Warm Period and the Little Ice Age. The Holocene, 29: 85-96.
- 65. Plunkett, G. & Swindles, G. T., 2008. Determining the Sun's influence on Lateglacial and Holocene climates: a focus on climate response to centennial-scale solar forcing at 2800 cal. BP. Quaternary Science Reviews, 27: 175-184.
- 66. Prager, C., Zangerl, C., Patzelt, G. & Brandner, R., 2008. Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Natural Hazards and Earth System Science, 8: 377-407.
- 67. Rădoane, M., Chiriloaei, F., Sava, T., Nechita, C., Rădoane, N. & Gaza, O., 2019. Holocene fluvial history of Romanian Carpathian rivers. Quaternary International, 527: 113-129.
- 68. Reimer, P., Austin, W., Bard, E., Bayliss, A., Blackwell, P., Bronk Ramsey, C., Butzin, M., Cheng, M. H., Edwards, R., Friedrich, M., Grootes, P., Guilderson, T., Hajdas, I., Heaton, T., Hogg, A., Hughen, K., Kromer, B., Manning, S., Muscheler, R., Palmer, J., Pearson, C., van der Plicht, J., Reimer, R., Richards, D., Scott, E., Southon, J., Turney, C., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A. & Talamo, S., 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon, 62: 725-757.
- 69. Rybniček, K. & Rybničková, E., 2002. Vegetation of the Upper Orava region (NW Slovakia) in the last 11000 years. Acta Paleobotanica, 42: 153-170.
- 70. Schenková, V. & Horsák, M., 2013. Refugial populations of Vertigo lilljeborgi and V. genesii (Vertiginidae): New isolated occurrences in Central Europe, ecology and distribution. American Malacological Bulletin, 31: 323-329.
- 71. Schenková, V., Horsák, M., Plesková, Z. & Pawlikowski, P., 2012. Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. Journal of Molluscan Studies, 78: 105-111.
- 72. Shakesby, R. A., Matthews, J. A., Winkler, S., Fabel, D. & Dresser, P. Q., 2020. Early-Holocene moraine chronology, Sognefjell area, southern Norway: evidence for multiple glacial and climatic fluctuations within the Erdalen Event (~10.2-9.7 ka). Norwegian Journal of Geology, 100: 1-28.
- 73. Soldati, M., Corsini, A. & Pasuto, A., 2004. Landslides and climate change in the Italian Dolomites since the Late glacial. Catena, 55: 141-161.
- 74. Starkel, L., 1997. Mass movement during the Holocene: Carpathian example and the European perspective. In: Frenzel, B. (ed.), Rapid mass movement as a source of climatic evidence for the Holocene. Palaeoclimate Research, 19: 385-400.
- 75. Starkel, L., Michczyńska, D. J., Krąpiec, M., Margielewski, W., Nalepka, D. & Pazdur, A., 2013. Progress in the Holocene chrono-climatostratigraphy of Polish territory. Geochronometria, 40: 1-21.
- 76. Starkel, L., Soja, R. & Michczyńska, D. J., 2006. Past hydrological events reflected in Holocene history of Polish Rivers. Catena, 66: 24-33.
- 77. Walker, M., Head, M. J., Lowe, J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L. C., Fisher, D., Gkinis, V., Long, A., Newnham, R., Rasmussen, S. O. & Weiss, H., 2019. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. Journal of Quaternary Science, 34: 173-186.
- 78. Wanner, H., Mercolli, L., Grosjean, M. & Ritz, S. P., 2014. Holocene climate variability and change; a data-based review. Journal of the Geological Society, 172: 254-263.
- 79. Welter-Schultes, F. W., 2012. European Non-Marine Molluscs, Guide for Species Identification. Planet Poster Editions, Göttingen, 687 pp.
- 80. Wiktor, A., 2004. Ślimaki lądowe Polski. Wydawnictwo Mantis, Olsztyn, 302 pp. [In Polish.]
- 81. Wirth, S. B., Glur, L. & Gilli, A., 2013. Holocene flood frequency across the Central Alps - Solar forcing and evidence for variations in North Atlantic atmospheric circulation. Quaternary Science Reviews, 80: 112-128.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ca45727-19c6-403d-a34a-e4574e5c9fe9