PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Atmospheric plasma spraying of Al2O3 + 13% TiO2 coatings using external and internal injection system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ceramic coatings based on mixture of Al2O3 and TiO2 have better properties in comparison to the pure alumina ones. Among many techniques, plasma spraying is very useful method of ceramic coatings manufacturing. In this paper, the results of microscopic, mechanical and tribological properties investigations of Al2O3 + 13 wt% TiO2 coatings manufactured by atmospheric plasma spraying are presented. The cylinder substrates made from stainless steel (X5CrNi18-10) had a diameter equal to 25 mm and thickness equal to 2 mm. The plasma spray experimental parameters included three variables: (i) type of injection system (external or internal), (ii) size of corundum particles for sandblasting and (iii) torch linear speed. The results confirm, that type of injection system is a dominant parameter. Internal injection results in better degree of particles melting, what influences on wear resistance performance, as well as higher values of bond strength.
Rocznik
Strony
5--17
Opis fizyczny
Bibliogr. 34, rys., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Mechanical Engineering Faculty, 5 Łukasiewicza St., 50-371 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Mechanical Engineering Faculty, 5 Łukasiewicza St., 50-371 Wrocław, Poland
autor
  • Silesian University of Technology, Mechanical Engineering Faculty, 18a Konarskiego St., 44-100 Gliwice, Poland
Bibliografia
  • 1. Fauchais P., Vardelle A.M., Dussoubs B., Quo Vadis Thermal Spraying? Journal of Thermal Spray Technology, 2001, Vol. 10(1), 44–66.
  • 2. Szala M., Hejwowski T., Cavitation erosion resistance and wear mechanism model of flame-sprayed Al2O3-40% TiO2/NiMoAl cermet coatings, Coatings, 8 (2018) 254.
  • 3. Czupryński A., Selected properties of thermally sprayed oxide ceramic coatings, Advances in Materials Science, 15 (2015) 17–32.
  • 4. Łatka L., Thermal barrier coatings manufactured by suspension plasma spraying – a review, Advances in Materials Science, 18 (2018) 95–117.
  • 5. Musztyfaga-Staszuk M., Czupryński A., Kciuk M., Investigation of mechanical and anti-corrosion properties of flame sprayed coatings, Advances in Materials Science, 18 (2018) 42–53.
  • 6. Chmielewski T., Siwek P., Chmielewski M., Piątkowska A., Grabias A., Golański D., Structure and selcted properties of arc sprayed coatings containing in-situ fabricated Fe-Al intermetallic phases, Metals, 8 (2018) 1059.
  • 7. Wypych A., Siwak P., Andrzejewski D., Jakubowicz J., Titanium plasma-sprayed coatings on polymers for hard tissue applications, Materials, 11 (2018) 2536.
  • 8. Winnicki M., Baszczuk A., Jasiorski M., Małachowska A., Corrosion resistance of cooper coatings deposited by cold spraying, Journal of Thermal Spray Technology, 26 (2017) 1935-1946.
  • 9. Pawłowski L., The Science and Engineering of Thermal Spray Coatings, 2nd. ed. , Wiley, Chichester, U.K., 2008.
  • 10. Candidato R.T., Sokołowski P., Łatka L., Kozerski S., Pawłowski L., Denoirjean A., Plasma spraying of hydroxyapatite coatings using powders, suspension and solution feedstock, Przegląd Spawalnictwa, 87 (2015) 64-71.
  • 11. Szala M., Dudek A., Maruszczyk A., Walczak M., Chmiel J., Kowal M., Effect of atmospheric plasma sprayed TiO2-10% NiAl cermet coatings thickness on cavitation erosion, sliding and abrasive wear resistance, Acta Physica Polonica A, 136 (2019) 335-341.
  • 12. Basu B., Balani K.: Advanced Structural Ceramics, Basu B. [ed.], John Wiley & Sons, New Jersey, 2011.
  • 13. Toma F.-L., Berger L.-M., Stahr C.C., Naumann T., Langner S., Microstructures and functional properties of suspension-sprayed Al2O3 and TiO2 coatings: an overview, Journal of Thermal Spray Technology, 19(1–2) (2010) 262-274.
  • 14. Berger L.-M., Sempf K., Sohn Y.J., Vassen R., Influence of Feedstock Powder Modification by Heat Treatments on the Properties of APS-Sprayed Al2O3-40% TiO2 Coatings, Journal of Thermal Spray Technology, 27(4) (2018) 654–666.
  • 15. Yilmaz R., Kurt A.O., Demir A., Tatli Z., Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating, Journal of the European Ceramic Society, 27 (2007) 1319–1323.
  • 16. Sanchez E., Bannier E., Cantavella V., Salvador M.D., Klyatskina E., Morgiel J., Grzonka J., Boccaccini A.R., Deposition of Al2O3-TiO2 Nanostructured Powders by Atmospheric Plasma Spraying, Journal of Thermal Spray Technology, 17 (2008) 329–337.
  • 17. Kroemmer M.: Practice of thermal spraying: Guidance for technical personnel, Kroemmer M. [ed.], DVS Media GmbH, Hagen, 2014.
  • 18. Dejang N., Watcharapasorn A., Wirojupatump S., Niranatlumpong P., Jiansirisomboon S., Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: A role of nano-sized TiO2 addition, Surface and Coatings Technology, 2014 (2010) 1651–1657.
  • 19. Mishra S.C., Sahu A.: Alumina-Titania Overlay Coating on Metals: Surface Modification, Mishra S.C. [ed.], LAP LAMBERT Academic Publishing, 2017.
  • 20. Zhang J., He J., Dong Y., Li X., Yan D., Microstructure and properties of Al2O3-13%TiO2 coatings sprayed using nanostructured powders, Rare Metals, 26 (2007) 391–397.
  • 21. Prevey P.S., X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings, Journal of Thermal Spray Technology, 9 (2000) 369-376.
  • 22. Palmqvist S., Occurrence of crack formation during Vickers indentation as a measure of the toughness of hard metals, Archiv für das Eisenhüttenwesen, 33 (1962) 629–633.
  • 23. Michalak M., Łatka L., Sokołowski P., Porównanie właściwości mechanicznych powłok natryskiwanych plazmowo proszkowo i z zawiesin, Przegląd Spawalnictwa 10 (2017) 56–60.
  • 24. Vincent M., Bannier E., Moreno R., Salvador M.D., Sanchez E., Atmospheric plasma spraying coatings from alumina-titania feedstock comprising bimodal particle size distribution, Journal of European Ceramic Society, 33 (2013) 3313–3324.
  • 25. Yugeswaran S., Selvarajan V., Vijay M., Ananthapadmanabhan P.V. , Sreekumar K.P.: Influence of critical plasma spraying parameter (CPSP) on plasma sprayed Alumina–Titania composite coatings, Ceramics International, 36 (2010) 141–149.
  • 26. Jafarzadeh K., Valefi Z., Ghavidel B., The effect of plasma spray parameters on the cavitation erosion of Al2O3–TiO2 coatings, Surface and Coatings Technology, 205 (2010) 1850–1855.
  • 27. Islak S., Buytoz S., Ersoz E., Orhan N., Stokes J., Saleem Hashmi M., Somunkiran I., Tosun N., Effect on microstructure of TiO2 rate in Al2O3-TiO2 composite coating produced using plasma spray method, Optoelectronics and advanced materials – rapid communications, 6 (2012) 884–849.
  • 28. Stengl V., Ageorges H., Ctibor P., Murafa N., Atmospheric plasma sprayed (APS) coatings of Al2O3–TiO2 system for photocatalytic application, Photochemical & Photobiological Sciences, 8 (2009) 733–738.
  • 29. Yao S.H., Su Y.L., Shu H.Y., Chia L., Ling Y.Z., Comparative Study on Nano-Structural and Traditional Al2O3-13TiO2 Air Plasma Sprayed Coatings and their Thermal Shock Performance, Key Engineering Materials, 739 (2017) 103–107.
  • 30. Vijay M., Selvarajan V., Yugeswaran S., Ananthapadmanabhan P.V., Sreekumar K.P., Effect of Spraying Parameters on Deposition Efficiency and Wear Behavior of Plasma Sprayed Alumina-Titania Composite Coatings, Plasma Science and Technology, 11(2009) 666–673.
  • 31. Lima R.S., Marple B.R., Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, Journal of Thermal Spray Technology, 16 (2007) 40–63.
  • 32. Jordan E.H., Gell M., Sohn Y.H., Goberman D., Shaw L., Jiang S., Wang M., Xiao T.D., Wang Y., Strutt P., Fabrication and evaluation of plasma sprayed nanostructured alumina–titania coatings with superior properties, Materials Science and Engineering, A 301 (2001) 80-89.
  • 33. Żórawski W., Góral A., Makrenek M., Zimowski S., Tribological properties of plasma sprayed Al2O3-13TiO2 nanostructured coatings, Tribologia, 2 (2017) 157-165.
  • 34. Zimowski S., Rakowski W., Comparative analysis of friction effects of thin ceramic coatings in rotary, translation, and reciprocating motion, Tribologia, 6 (2009) 283–292.
Uwagi
1. These researches [paper] were funded by Ministry of Science and Higher Education, grant number 4283/E-366/M/2018
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c9ebd38-4572-4e65-b234-7bdafef34fc5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.