Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Aluminium matrix composites (AMC) are mostly preferred for their high specific strength, high ductility, corrosion resistance and creep resistance. Various experimental investigations are conducted in the field of AMCs, which are widely applicable in several fields like aerospace (especially aircraft structures and fittings), marine fittings, automotive industries (connecting rods, pistons, brake rotors, and engine blocks), etc. The current work presents the effect of a tungsten carbide (WC) reinforced Al6061/SiC hybrid composites. In this study, the WC particle (3÷5 μm) content is varied from 0 to 6 wt.% in steps of 2 wt.%, while keeping the SiC particle (63 μm) content of 5 wt.% constant. The stir casting method was used to prepare these composites and the behaviour of the composites was studied to ascertain their mechanical and corrosion properties. From the obtained results, it was observed that the ultimate tensile strength, hardness, and corrosion resistance of the composites are enhanced by increasing the content of WC, whereas the wear loss (microns) decreased as the WC was increased up to 4 wt.%; later it increased drastically at 6 wt.% WC. The corrosion results reveal that the corrosion rate of the composites is lower than that of the monolithic alloy. SEM examination of the tensile fracture surface shows that there is a formation of larger shear lips in the base alloy and the composite with 5 wt.% SiC; however, they are reduced gradually by the additions of WC to the composite. The microstructure of the corroded surfaces reveals that the pit density was reduced for the composite with 6 wt.% WC compared to the other composites.
Czasopismo
Rocznik
Tom
Strony
169--180
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- Raghu Institute of Technology, Visakhapatnam, India
autor
- SRKR Engineering College, Bhimavaram, India
autor
- Andhra University, Visakhapatnam, India
autor
- Jamia Institute of Engineering and Management Studies Akkalkuwa, Maharastra, India
Bibliografia
- [1] Ozben T., Kilickap E., Çakır O., Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC, Journal of Materials Processing Technology 2008, March, 198, 220-225, DOI: 10.1016/j.jmatprotec.2007.06.082.
- [2] Md. Rahman H., Mamun Al Rashed H.M., Characterization of silicon carbide reinforced aluminium matrix composites, Procedia Engineering 2014, 90, 103-109, DOI: 10.1016/j.proeng.2014.11.821.
- [3] Ravikumar K., Kiran K., Sreebalaji V.S., Characterization of mechanical properties of aluminium/tungsten carbide composites, Journal of Measurement 2017, May, 102, 142-149, DOI: 10.1016/j.measurement.2017.01.045.
- [4] Arivukkarasan S., Dhanalakshmi V., Stalin B., Ravichandran M., Mechanical and tribological behaviour of tungsten carbide reinforced aluminium LM4 matrix composites, Particulate Science and Technology 2017, May, 36, 967-973, DOI: 10.1080/02726351.2017.1331285.
- [5] Swamy A.R.K., Ramesha A., Prakash J.N., Veeresh Kumar G.B., Mechanical and tribological properties of As-cast Al6061-tungsten carbide metal matrix composites Journal of Material Science Research India 2010, April, 7, 355-368, DOI: 10.13005/msri/070205.
- [6] Fenghong C., Chang Ch., Zhenyu W., Muthuramalingam T.,Anbuchezhiyan G., Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites, Journal of Silicon 2019, January, 11, 2625-2632, DOI: 10.1007/s12633-018-0051-6.
- [7] Subramanya Reddy P., Kesavan R., Vijaya Ramnath B., Investigation of mechanical properties of aluminium 6061-silicon carbide, boron carbide metal matrix composite, Springer Science Business Media, Dordrecht, 2017, January, 10, 495-502, DOI: 10.1007/s12633-016-9479-8.
- [8] James S.J., Venkatesan K., Kuppan P., Ramanujam R., Hybrid aluminium metal matrix composite reinforced with SiC and TiB2, Procedia Engineering 2014, 97, 1018-1026, DOI: 10.1016/j.proeng.2014.12.379.
- [9] Bodunrin M.O., Alaneme K.K., Chown L.H., Aluminium matrix hybrid composites: a review of reinforcement philosophies: mechanical, corrosion and tribological characteristics, Journal of Materials Research and Technology 2015, October-December, 14, 434-445, DOI: 10.1016/j.jmrt.2015.05.003.
- [10] Alaneme K.K., Ademilua B.O., Bodunrin M.O., Mechanical properties and corrosion behaviour of aluminium hybrid composites reinforced with silicon carbide and bamboo leaf ash, Tribology in Industry 2013, March, 35, 25-35, https://www.researchgate.net/publication/279896312_Mechanical_Properties_and_Corrosion_Behaviour_of_Aluminium_Hybrid_Composites_Reinforced_with_Silicon_Carbide_and_Bamboo_Leaf_Ash.
- [11] Alaneme K.K., Sanusi K.O., Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash, and graphite, International Journal of Engineering Science and Technology 2015, September, 18, 416-422, DOI: 10.1016/j.jestch.2015.02.003.
- [12] Kok M., Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites, Journal of Materials Processing Technology 2005, April, 161, 381-387, DOI: 10.1016/j.jmatprotec.2004.07.068.
- [13] Pitchayyapillai G., Seenikannan P., Raja K., Chandrasekaran K., Al6061 hybrid metal matrix composite reinforced with alumina and molybdenum disulphide, Advances in Materials Science and Engineering 2016, Article ID 6127624, 2016, November, 1-9, DOI: 10.1155/2016/6127624.
- [14] Hima Gireesh Ch., Durga Prasad K.G., Ramji K. Experimental investigation on mechanical properties of an Al6061 hybrid metal matrix composite, Journal of Composites Science 2018, August, 49, 2, 1-10, DOI: 10.3390/jcs2030049.
- [15] Kountouras D.T., Stergioudi F., Tsouknidas A., Vogiatzis C.A., Skolianos S.M., Properties of high volume fraction fly ash composites produced by infiltration process, Journal of Materials Engineering and Performance 2015, September, 24, 3315-3322, DOI: 10.1007/s11665-015-1612-0.
- [16] Bienia J., Walczak M., Surowska B., Sobczak J., Microstructure and corrosion behavior of aluminum fly ash composites, Journal of Optoelectron Advanced Materials 2003, June, 5, 493-502, https://www.researchgate.net/publication/237802225_Microstructure_And_Corrosion_Behaviour_Of_Aluminum_Fly_Ash_Composites.
- [17] Zhiqiang S., Di Z., Li G., Evaluation of dry sliding wear behaviour of silicon particles reinforced aluminium matrix composites, Materials and Design 2005, August, 26, 454-458, DOI: 10.1016/j.matdes.2004.07.026.
- [18] Gikunoo E., Omotoso O., Oguocha I.N.A., Effect of fly ash particles on the mechanical properties of an aluminium casting alloy A535, Material Science and Technology 2005, July, 21, 143-152, DOI: 10.1179/174328405X18601.
- [19] Vamsi Krishna M., Xavior A.M., An investigation on the mechanical properties of hybrid metal matrix composites, Procedia Engineering 2014, 97, 918-924, DOI: 10.1016/j.proeng.2014.12.367.
- [20] Balasivanandha Prabu S., Karunamoorthy L., Kathiresan S., Mohan B., Influence of stirring speed and stirring time on the distribution of particles in cast metal matrix composite, Journal of Materials Processing Technology 2006, January, 171, 268-273, DOI: 10.1016/j.jmatprotec.2005.06.071.
- [21] Hima Gireesh Ch., Durga Prasad K.G., Ramji K., Vinay P.V., Mechanical characterization of aluminium metal matrix composite reinforced with aloe vera powder, Materials Today: Proceedings 2018, 5, 3289-3297, DOI: 10.1016/j.matpr.2017.11.571.
- [22] Bansal S., Saini J.S., Mechanical and wear properties of SiC/graphite reinforced Al359 alloy-based metal matrix composite, Defence Science Journal 2015, July, 65, 330-338, DOI: 10.14429/dsj.65.8676.
- [23] Rajesh D., Anand P., Lenin N., Bupesh Raja V.K., Palani-kumar K., Balaji V., Investigations on the mechanical properties of tungsten carbide reinforced aluminium metal matrix composites by stir casting, Materials Today: Proceedings 2021, January, 46, 2, 3618-3620, DOI: 10.1016/j.matpr.2021.01.634.
- [24] Huang G., Hou W., Shen Y., Evaluation of the microstructure and mechanical properties of WC particle reinforced aluminium matrix composites fabricated by friction stir processing, Materials Characterization 2018, April, 138, 26-37, DOI: 10.1016/j.matchar.2018.01.053.
- [25] Dinaharan I., Nelson R., Vijay S.J. et al., Microstructure and wear characterization of aluminium matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing, Materials Characterization 2016, August, 118, 149-158, DOI: 10.1016/j.matchar.2016.05.017.
- [26] Yadav D., Bauri R., Processing, microstructure and mechanical properties of nickel particles embedded aluminium matrix composite. Materials Science and Engineering A 2010, October, 528, 3, 1326-1333, DOI: 10.1016/j.msea.2010.10.035.
- [27] Ashok N., Shanmughasundaram P., Effect of particles size on the mechanical properties of SiC-reinforced aluminium 8011 composites, Materiali In Tehnologije/Materials and Technology 2016, November, 51, 667-672, DOI: 10.17222/mit.2016.252.
- [28] Subramanian S., Arunachalam B., Nallasivam K., Pramanik A., Investigations on tribo-mechanical behaviour of Al-Si10-Mg/sugarcane bagasse ash/SiC hybrid composites, China Foundry 2019, July, 16, 277-284, DOI: 10.1007/s41230-019-8176-9.
- [29] Justin Maria Hillary J., Ramamoorthi R., Dixon Jim Joseph J., Samson Jerold Samuel C., A study on microstructural effect and mechanical behaviour of Al6061-5%SiC-TiB2 particulates reinforced hybrid metal matrix composites, Journal of Composite Materials 2019, December, 54, 1-11, DOI: 10.1177%2F0021998319894666.
- [30] Niranjan D.B., Shiva Shankar G.S., Shankar L.B., Study on fracture behaviour of hybrid aluminium composite, Materials Science and Engineering 2018, January, 144 1-6, DOI: 10.1051/matecconf/201814402012.
- [31] Bandil K., Vashisth H., Kumar S., Verma L., Jamwal A., Kumar D., Singh N., Kumar Sadasivuni K., Gupta P., Microstructural, mechanical and corrosion behaviour of Al-Si alloy reinforced with SiC metal matrix composite, Journal of Composite Materials 2019, June, 53, 1-9, DOI: 10.1177%2F0021998319856679.
- [32] Velmurugan C., Investigations on the effect of tungsten carbide particles on the hardness and wear properties of aluminium composite materials, AIP Conference Proceedings 2020, November, 2270, 1, 030007-1-030007-7, DOI: 10.1063/5.0020308.
- [33] Ebenezer Jacob Dhas D.S., Velmurugan C., Leo Dev Wins K., BoopathiRaja K.P., Effect of tungsten carbide, silicon carbide and graphite particulates on the mechanical and microstructural characteristics of AA 5052 hybrid composites, Ceramics International 2019, January, 45, 1, 614-621, DOI: 10.1016/j.ceramint.2018.09.216.
- [34] Anish A., Ananth Kumar M., Characterization of an aluminium matrix reinforced with tungsten carbide and molybdenum disulphide hybrid composite, IOP Conf. Series: Materials Science and Engineering, 2018, March, 402, 1-9, DOI: 10.1088/1757-899X/402/1/012006.
- [35] Ajay Ram Krishna, Arun A., Unnikrishnan D., Karthik V. Shankar, An investigation on the mechanical and tribological properties of alloy A356 on the addition of WC, Materialstoday: Proceedings 2018, 5, 12349-12355, DOI: 10.1016/j.matpr.2018.02.213.
- [36] Sambathkumar M., Navaneethakrishnan P., Ponappa K., Sasikumar K.S.K., Mechanical and corrosion behavior of Al7075 (Hybrid) metal matrix composites by two-step stir casting process, Latin America Journal of Solids and Structures 2017, February, 14, 243-255, DOI: 10.1590/1679-78253132.
- [37] Lekatou A., Karantzalis A.E., Evangelou A., Gousia V., Kaptay G., Gácsi Z., Baumli P., Simon A., Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour, Materials and Design 2015, January, 65, 1121-1135, DOI: 10.1016/j.matdes.2014.08.040.
- [38] Idusuyi N., Olayinka J.I., Dry sliding wear characteristics of aluminium metal matrix composites: a brief overview, Journal of Materials Research and Technology 2019, May-June, 8, 3338-3346, DOI: 10.1016/j.jmrt.2019.04.017.
- [39] Gargatte S., Upadhye R.R., Dandagi V.S., Desai S.R., Waghamode B.S., Preparation & characterization of Al-5083 alloy composites, Journal of Minerals and Materials Characterization and Engineering 2013, January, 1, 8-14, DOI: 10.4236/jmmce.2013.11002.
- [40] Saravanan S., Senthilkumar P., Ravichandran M., Veeramani Anandakrishnan, Mechanical, electrical, and corrosion behaviour of AA6063/TiC composites synthesized via stir casting route, Springer 2017, February, 32,606-614, DOI: 10.1557/jmr.2016.503.
- [41] Olusesi O.S., Udoye N.E., Development and characterization of AA6061 aluminium alloy /clay and rice husk ash composite, Manufacturing Letters 2021, June, 29, 34-41, DOI: 10.1016/j.mfglet.2021.05.006.
- 42] Bhushan R.K., Effect of SiC particle size and weight % on mechanical properties of AA7075/SiC composite, Advanced Composites and Hybrid Materials 2020, September, 4, 1-12, DOI: 10.1007/s42114-020-00175-z.
- [43] Gopal Krishna U.B., Ranganatha P., Auradi V., Mahendra Kumar S., Vasudeva B., Microstructural evolution in WC-Co cermet reinforced – Al7075 metal matrix composites by stir casting, Materials Science and Engineering 2016, 149, 1-8, DOI: 10.1088/1757-899X/149/1/012090.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c9ea9ad-2efe-41e1-b28d-913b27f2e34c