PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Alkali Pretreatment and Organic Solvent Pretreatment on Biogas Production from Anaerobic Digestion of Food Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anaerobic digestion of food waste is an encouraging technology for biogas production. Pretreatment of the substrate is needed to increase biodegradation. This study aimed to investigate the effect of alkali pretreatment and organic solvent pretreatment on biogas production. Physical pretreatment was also applied in this study. NaOH (0%, 2%, 4% and 6%) was used as alkali pretreatment. Ethanol (0, 2, 4 and 6%) was used as organic solvent pretreatment. The experiment was conducted in a 1 L batch digester under room temperature. Results showed that 0% NaOH generated the highest cumulative biogas yield of 46.1 mL/gVS. The best biodegradability of 37.5% was achieved in NaOH of 0%. The lower concentration of ethanol generated a higher biogas yield. The greatest cumulative yield of 41.5 mL/gVS was obtained at an ethanol concentration of 0% with a biodegradability of 33.84%. Statistical analysis proved that alkali pretreatment and organic solvent pretreatment had no significant effect on biogas production (p>0.05). Physical pretreatment had a significant effect (p<0.05) with the highest cumulative yield of 58.2 mL/gVS. The kinetic model proved that the modified Gompertz was a suitable model for predicting and simulating the kinetics of anaerobic digestion from food waste (R2 > 0.9).
Rocznik
Strony
179--188
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, 55191, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, 55191, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, 55191, Indonesia
  • Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Yogyakarta, 55191, Indonesia
Bibliografia
  • 1. Ariunbaatar, J. 2014. Methods to enhance anaerobic digestion of food waste. Agricultural Sciences. Universete Paris-Est. https://tel.archives-ouvertes.fr/tel-01206170
  • 2. Bakraoui, M., Karouach, F., Ouhammou, B., Lahboubi, N., Gnaoui, Y. el, Kerrou, O., Aggour, M., el Bari, H. 2020. Kinetics study of methane production from anaerobic digestion of sludge and wastewater recycled pulp and paper. IOP Conference Series: Materials Science and Engineering, 946(1). https://doi.org/10.1088/1757-899X/946/1/012009
  • 3. Bernat, K., Zaborowska, M., & Goryszewska, K. 2020.The impact of mechanical pretreatment on biogas production from waste materials of the chemical and brewing industries. Technical Transactions, 1–12. https://doi.org/10.37705/techtrans/e2020037
  • 4. Dolci, G., Catenacci, A., Malpei, F., Grosso, M. 2021. Effect of Paper vs. Bioplastic Bags on Food Waste Collection and Processing. Waste and Biomass Valorization, 12(11), 6293–6307. https://doi.org/10.1007/s12649-021-01448-4
  • 5. Gao, M., Zhang, S., Ma, X., Guan, W., Song, N., Wang, Q., Wu, C. 2020. Effect of yeast addition on the biogas production performance of a food waste anaerobic digestion system. Royal Society Open Science, 7(8), 200443. https://doi.org/10.1098/rsos.200443
  • 6. Gnaoui, Y. el, Karouach, F., Bakraoui, M., Barz, M., Bari, H. el. 2020. Mesophilic anaerobic digestion of food waste: Effect of thermal pretreatment on the improvement of the anaerobic digestion process. Energy Reports, 6, 417–422. https://doi.org/10.1016/j.egyr.2019.11.096
  • 7. Junoh, H., Yip, C. H., Kumaran, P. 2016. Effect on Ca(OH)2 pretreatment to enhance biogas production of organic food waste. IOP Conference Series: Earth and Environmental Science, 32(1). https://doi.org/10.1088/1755-1315/32/1/012013
  • 8. Khadka, A., Parajuli, A., Dangol, S., Thapa, B., Sapkota, L., Carmona-Martínez, A.A., Ghimire, A. 2022. Effect of the substrate to inoculum ratios on the kinetics of biogas production during the mesophilic anaerobic digestion of food waste. Energies, 15(3). https://doi.org/10.3390/en15030834
  • 9. Khan, M.U., Usman, M., Ashraf, M.A., Dutta, N., Luo, G., Zhang, S. 2022. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. Chemical Engineering Journal Advances, 10. https://doi.org/10.1016/j.ceja.2022.100263
  • 10. Lahboubi, N., Karouach, F., Bakraoui, M., el Gnaoui, Y., Essamri, A., el Bari, H. 2022. Effect of alkali-NaOH pretreatment on methane production from anaerobic digestion of date palm waste. Ecological Engineering and Environmental Technology, 23(2), 78–89. https://doi.org/10.12912/27197050/144846
  • 11. Lahboubi, N., Kerrou, O., Karouach, F., Bakraoui, M., Schüch, A., Schmedemann, K., Stinner, W., el Bari, H., Essamri, A. 2020. Methane production from mesophilic fed-batch anaerobic digestion of empty fruit bunch of palm tree. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00864-1
  • 12. Marañón, E., Negral, L., Suárez-Peña, B., Fernández-Nava, Y., Ormaechea, P., Díaz-Caneja, P., Castrillón, L. 2021. Evaluation of the Methane Potential and Kinetics of Supermarket Food Waste. Waste and Biomass Valorization, 12(4), 1829–1843. https://doi.org/10.1007/s12649-020-01131-0
  • 13. Mirmohamadsadeghi, S., Karimi, K., Tabatabaei, M., Aghbashlo, M. 2019. Biogas production from food wastes: A review on recent developments and future perspectives. Bioresource Technology Reports, 7(March), 100202. https://doi.org/10.1016/j.biteb.2019.100202
  • 14. Mirmohamadsadeghi, S., Karimi, K., Zamani, A., Amiri, H., Horváth, I.S. 2014. Enhanced solid-state biogas production from lignocellulosic biomass by organosolv pretreatment. BioMed Research International, 2014. https://doi.org/10.1155/2014/350414
  • 15. Moharir, S., Bondre, A., Vaidya, S., Patankar, P., Kanaskar, Y., Karne, H. 2020. Comparative Analysis of the Amount of Biogas Produced by Different Cultures using the Modified Gompertz Model and Logistic Model. European Journal of Sustainable Development Research, 4(4), em0141. https://doi.org/10.29333/ejosdr/8550
  • 16. Parra-Orobio, B.A., Donoso-Bravo, A., Torres-Lozada, P. 2017. Anaerobic digestion of food waste. Predicting of methane production by comparing kinetic models. Environmental and Sanitary – Engineering Ingeniería y Competitividad, 19(1).
  • 17. Poddar, B.J., Nakhate, S.P., Gupta, R.K., Chavan, A.R., Singh, A.K., Khardenavis, A.A., Purohit, H.J. 2022. A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology, 19(4), 3429–3456. https://doi.org/10.1007/s13762-021-03248-8
  • 18. Pramanik, S.K., Suja, F.B., Porhemmat, M., Pramanik, B.K. 2019. Performance and kinetic model of a single-stage anaerobic digestion system operated at different successive operating stages for the treatment of food waste. Processes, 7(9). https://doi.org/10.3390/pr7090600
  • 19. Radmard, S.A., Alizadeh, H.H.A., Seifi, R. 2018. Enhancement anaerobic digestion and methane production from kitchen waste by thermal and thermo-chemical pretreatments in batch leach bed reactor with down flow. Research in Agricultural Engineering, 64(3), 128–135. https://doi.org/10.17221/16/2017-RAE
  • 20. Salehian, P., Karimi, K. 2013. Alkali pretreatment for improvement of biogas and ethanol production from different waste parts of pine tree. Industrial and Engineering Chemistry Research, 52(2), 972–978. https://doi.org/10.1021/ie302805c
  • 21. Saragih, F.N.A., Priadi, C.R., Adityosulindro, S., Abdillah, A., Islami, B.B. 2019. The effectiveness of anaerobic digestion process by thermal pre-treatment on food waste as a substrate. IOP Conference Series: Earth and Environmental Science, 251(1). https://doi.org/10.1088/1755-1315/251/1/012014
  • 22. Shitophyta, L. M. 2020. Model Kinetika Produksi Biogas dari Limbah Makanan. Jurnal Rekayasa Bahan Alam Dan Energi Berkelanjutan, 4(1), 15–18.
  • 23. Shitophyta, L.M., Budiarti, G.I., Nugroho, Y.E., Fajariyanto, D. 2020. Biogas Production from Corn Stover by Solid-State Anaerobic Co-digestion of Food Waste. Jurnal Teknik Kimia Dan Lingkungan, 4(1), 44–52.
  • 24. Shitophyta, L.M., Salsabila, A., Anggraini, F., Jamilatun, S. 2021. Development of kinetic models for biogas production from tofu liquid waste. ELKAWNIE Journal of Islamic Science and Technology, 7(1), 1–2.
  • 25. Shitophyta, L.M., Salsabila, A., Putri, F.A., Jamilatun, S. 2022. Enhancement of biogas production through solid-state anaerobic co-digestion of food waste and corn cobs. Makara Journal of Technology, 26(1), 8–12. https://doi.org/10.7454/mst.v26i1.1478
  • 26. Wadchasit, P., Siripattana, C., Nuithitikul, K. 2020. The effect of pretreatment methods for improved biogas production from oil-palm empty fruit bunches (EFB): Experimental and model. IOP Conference Series: Earth and Environmental Science, 463(1). https://doi.org/10.1088/1755-1315/463/1/012126
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c9bd1f4-55fe-485c-a381-b1ae66f373a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.