Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let G be a simple graph of order n. The connected domination polynomial of G is the polynomial Dc (G, x) = Σ |V(G)|i=γc(G) dc (G, i)xi, where dc (G, i) is the number of connected dominating sets of G of size i and γc (G) is the connected domination number of G. In this paper we study Dc (G, x) of any graph. We classify many families of graphs by studying their connected domination polynomial.
Czasopismo
Rocznik
Tom
Strony
103--121
Opis fizyczny
Bibliogr. 7 poz., rys.
Twórcy
autor
- Department of Mathematics University of Mazandaran Babolsar, Iran
autor
- Department of Mathematics University of Mazandaran Babolsar, Iran
Bibliografia
- [1] Akbari S., Alikhani S., Peng Y.H., Characterization of graphs using domination Polynomials, European J. Combin., 31(2010), 1714-1724.
- [2] Alikhani S., Peng Y.H., Dominating sets and domination polynomials of cycles, Global Journal of Pure and Applied Mathematics, 4(2)(2008), 151-162.
- [3] Alikhani S., Peng Y.H., Domination polynomials of cubic graphs of order 10, Turkish Journal of Mathematics, 35(2011), 355-366.
- [4] Alikhani S., Peng Y.H., Dominating sets and domination polynomials of Paths, International Journal of Mathematics and Mathematical Science, Vol. 2009, Article ID 542040 (2009).
- [5] Biggs N.L., Algebraic Graph Theory, 2nd ed. Cambridge, Cambridge University press., England, 1993.
- [6] Bondy J.A., Murty U.S.R., Graph Theory, Graduate Texts Mathematics 244, 2008.
- [7] Haynes T.W., Hedetniemi S.T., Slater P.J., Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c979647-b74c-4e35-b2fd-50525c2729b1