PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of ultrasonic and other atomization methods in metal powder production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Additive manufacturing (AM) research needs new alloys to grow and offer new functionalities. This paper presents a novel powder production method by means of ultrasonic atomisation (UA). Powders for AM can be obtained from gas atomisation (GA) and a comparative study of UA- vs GA-made powders were carried out. To UA explain the pros & cons more clearly, a summary of the processes was added, along with the analysis of the droplet formation physics. Design/methodology/approach: Ultrasonic atomization (UA) with melting raw material by an electric arc. Characterisation of the powders: particle size distribution (PSD), density, and flowability were carried out. Other parameters, such as microstructure, deviation in the chemical composition and powder surface morphology, were also investigated. Findings: The results showed that the UA powder has a finer average particle size with a narrower statistical distribution of particles than those made by the GA method. Because the UA powder has a higher sphericity and lower porosity, Generally, UA offers better-quality powders in terms of properties such as higher tap density, better flowability and low oxygen content. Research limitations/implications: As an example of semi-industrial scale application of the UA system, the Ti6Al4V and TiAl powders were produced after remelting the wire. The UA system is commercially available for processing any metallic material. Practical implications: The test campaign results showed that the Ti6Al4V powder produced by the ultrasonic atomisation has a similar or better quality as those available from large-scale gas atomisation plants. Originality/value: The new method of UA powder production was analysed in terms of key powder parameters. The properties of the titanium-based powder produced this way were analysed with a view to future applications.
Rocznik
Strony
11--24
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • Koszalin University of Technology, ul. Śniadeckich 2, 75-453 Koszalin, Poland
autor
  • 3D Lab Ltd., ul. Farbiarska 63B, 02-862 Warszawa, Poland
  • Koszalin University of Technology, ul. Śniadeckich 2, 75-453 Koszalin, Poland
autor
  • 3D Lab Ltd., ul. Farbiarska 63B, 02-862 Warszawa, Poland
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Z.Z. Fang, J.D. Paramore, P. Sun, K.S. Ravi Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Powder metallurgy of titanium – past, present, and future, International Materials Reviews 63/7 (2018) 407-459. DOI: https://doi.org/10.1080/09506608.2017.1366003
  • [2] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Kraszewska, Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage, Archives of Materials Science and Engineering 102/1 (2020) 13-41. DOI: https://doi.org/10.5604/01.3001.0014.1452
  • [3] D. Chasoglou, Powder Manufacturing and Characterization, lecture by Hoganas AB for European Powder Metallurgy Association Summer School, 2016. Available from: https://www.epma.com/document-archive/summer-school-presentations/summer-school-2016/604-powder-manufacturing-characterization/file
  • [4] P. Sun, Z.Z. Fang, Y. Zhang, Y. Xia, Review of the Methods for Production of Spherical Ti and Ti Alloy Powder, JOM 69/10 (2017) 1853-1860. DOI: https://doi.org/10.1007/s11837-017-2513-5
  • [5] S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, The Influence of Porosity on Fatigue Crack Initiation in Additively Manufactured Titanium Components, Scientific Reports 7 (2017) 7308. DOI: https://doi.org/10.1038/s41598-017-06504-5
  • [6] D. Zhang, W. Wang, Y. Guo, S. Hu, D. Dong, R. Poprawe, J.H. Schleifenbaum, S. Ziegler, Numerical simulation in the absorption behavior of Ti6Al4V powder materials to laser energy during SLM, Journal of Materials Processing Technology 268 (2019) 25-36. DOI: https://doi.org/10.1016/j.jmatprotec.2019.01.002
  • [7] M. Bielecki, J. Kluczyński, Ł. Słoboda, K. Grzelak, Manufacturing of metallic powders for am market by ultrasonic atomisation method, Proceedings of Metal Additive Manufacturing Conference “MAMC 2021”, Vienna, Austria, 2021.
  • [8] M. Bielecki, R. Rałowicz, Ł. Słoboda, Method and device for producing heavy metal powders by ultrasonic atomisation, International Patent Submission WO2021009683, 2020.
  • [9] R. Ralowicz, L. Zrodowski, J. Rozpendowski, K. Kaczynski, W. Lacisz, M. Ostrysz, Device for the manufacturing of spherical metal powders by an ultrasonic atomisation method, International Patent Submission WO2019092641, 2018.
  • [10] K. Kaczyński, R. Rałowicz, M. Bielecki, A method for evacuation of powder produced by ultrasonic atomisation and a device for implementing this method, International Patent Submission WO2021009708A1, 2020.
  • [11] S. Komarov, M. Kuwabara, O.V. Abramov, High Power Ultrasonics in Pyrometallurgy: Current Status and Recent Development, ISIJ International 45/12 (2005) 1765-1782. DOI: https://doi.org/10.2355/isijinternational.45.1765
  • [12] S. Habib Alavi, S.P. Harimkar, Effect of vibration frequency and displacement on melt expulsion characteristics and geometric parameters for ultrasonic vibration-assisted laser drilling of steel, Ultrasonics 94 (2019) 305-313. DOI: https://doi.org/10.1016/j.ultras.2018.08.012
  • [13] Ł. Żrodowski, R. Wróblewski, T. Choma, B. Morończyk, M. Ostrysz, M. Leonowicz, W. Łacisz, P. Błyskun, J.S. Wróbel, G. Cieślak, B. Wysocki, C. Żrodowski, K. Pomian, Novel Cold Crucible Ultrasonic Atomization Powder Production Method for 3D Printing, Materials 14/10 (2021) 2541. DOI: https://doi.org/10.3390/ma14102541
  • [14] S. Biswas, S. Habib Alavi, B. Sedai, F.D. Blum, S.P. Harimkar, Effect of ultrasonic vibration-assisted laser surface melting and texturing of Ti-6Al-4V ELI alloy on surface properties, Journal of Materials Science and Technology 35/2 (2019) 295-302. DOI: https://doi.org/10.1016/j.jmst.2018.09.057
  • [15] 3D Lab Ltd., Ato Lab+ product review - small scale atomizer for reactive metal materials, 2019. Available from: https://www.youtube.com/watch?v=Zr-4FV29za0
  • [16] Repowder, Project Repository, 2021. Available from: https://repowder.dtu.dk/
  • [17] R. Pohlman, K. Heisler, M. Cichos, Powdering aluminum and aluminum alloys by ultrasound, Ultrasonics 12/1 (1974) 11-15. DOI: https://doi.org/10.1016/0041-624X(74)90080-8
  • [18] ALD Vacuum Technologies GmbH, Metal Additive Manufacturing - EIGA and VIGA: Metal Powder Inert Gas Atomization Equipment, 2016. Available from: https://www.ald-vt.com/wp-content/uploads/2018/01/Metal_Additive_Manufacturing.pdf
  • [19] A. Kirchner, B. Klöden, T. Weißgärber, B. Kieback, Powders for Additive Manufacturing, Proceedings of the World PM2016 – AM – Powder Characteristics Congress and Exhibition, Hamburg, Germany, 2016.
  • [20] V. Güther, Manufacturing of TiAl Powders based on Electrode Induction Gas Atomization, Proceedings of the Titanium Europe Conference, Vienna, Austria, 2019.
  • [21] R.J. Lang, Ultrasonic atomization of liquids, The Journal of the Acoustical Society of America 34 (1962) 6-9. DOI: https://doi.org/10.1121/1.1909020
  • [22] B. Avvaru, M.N. Patil, P.R. Gogate, A.B. Pandit, Ultrasonic atomisation: effect of liquid phase properties, Ultrasonics 44/2 (2006) 146-158. DOI: https://doi.org/10.1016/j.ultras.2005.09.003
  • [23] K.A. Ramisetty, A.B. Pandit, P.R. Gogate, Investigations into ultrasound induced atomisation, Ultrasonics Sonochemistry 20/1 (2013) 254-264. DOI: https://doi.org/10.1016/j.ultsonch.2012.05.001
  • [24] M. Dobre, L. Bolle, Visualisation and Analysis of Liquid Film Surface Patterns Formed on Ultrasonic Atomizers, Proceedings of the ILASS-Europe’99, Toulouse, France, 1999.
  • [25] A. Sugondo, Sutrisno, W. Anggono, O. Anne, Effect of Frequency on Droplet Characteristics in Ultrasonic Atomization Process, E3S Web of Conferences 130 (2019) 01002. DOI: https://doi.org/10.1051/e3sconf/201913001002
  • [26] A.J. Yule, Y. Al-Suleimani, On droplet formation from capillary waves on a vibrating surface, Proceedings of the Royal Society A 456 (2000) 1069-1085. DOI: https://doi.org/10.1098/rspa.2000.0551
  • [27] Y. Al-Suleimani, A.J. Yule, A.P. Collins, How Orderly is Ultrasonic Atomisation?, Proceedings of the ILASS-Europe’99, Toulouse, France, 1999.
  • [28] K. Zhou, H.P. Wang, J. Chang, B. Wei, Experimental study of surface tension, specific heat and thermal diffusivity of liquid and solid titanium, Chemical Physics Letters 639 (2015) 105-108. DOI: https://doi.org/10.1016/j.cplett.2015.09.014
  • [29] R.Κ. Wunderlich, Surface Tension and Viscosity of Industrial Ti-Alloys measured by the Oscillating Drop Method on Board Parabolic Flights, High Temperature Materials and Processes 27/6 (2008) 401-412. DOI: https://doi.org/10.1515/HTMP.2008.27.6.401
  • [30] J.R. Raush, Thermophysical and Thermochemical Property Measurement and Prediction of Liquid Metal Titanium Alloys with Applications in Additive Manufacturing, PhD Thesis, Louisiana State University, Baton Rouge, 2016.
  • [31] M. Bielecki, How Ansys helped to make powder for additive manufacturing?, 2020. Available from: https://mesco.com.pl/blog/238-blog-mes/1180-how-ansys-helped-to-make-powder-for-additive-manufacturing
  • [32] R. Muñoz-Moreno, E.M. Ruiz-Navas, B. Srinivasarao, J.M. Torralba, Microstructural Development and Mechanical Properties of PM Ti-45Al-2Nb-2Mn-0.8 vol.%TiB2 Processed by Field Assisted Hot Pressing, Journal of Materials Science and Technology 30/11 (2014) 1145-1154. DOI: https://doi.org/10.1016/j.jmst.2014.08.008
  • [33] J. Klimas, A. Łukaszewicz, M. Szota, K. Laskowski, Work on the modification of the structure and properties of Ti6Al4V titanium alloy for biomedical applications, Archives of Materials Science and Engineering 78/1 (2016) 10-16. DOI: https://doi.org/10.5604/18972764.1226308
  • [34] Z. Liu, C. Huang, C. Gao, R. Liu, J. Chen, Z. Xiao, Characterisation of Ti6Al4V powders produced by different methods for selective electron beam melting, Journal of Mining and Metallurgy B: Metallurgy 55/1 (2019) 121-128. DOI: https://doi.org/10.2298/JMMB181025008L
  • [35] M. Mohr, R. Wunderlich, R. Novakovic, E. Ricci, H.- J. Fecht, Precise Measurements of Thermophysical Properties of Liquid Ti–6Al–4V (Ti64) Alloy On Board the International Space Station, Advanced Engineering Materials 22/7 (2020) 2000169. DOI: https://doi.org/10.1002/adem.202000169
  • [36] Specification MetcoAdd Ti64 G23, 2021. Available from: https://www.oerlikon.com/ecomaXL/files/metco/oerlikon_OAM_Ti-6Al-4V_G_5_23_1910.pdf
  • [37] T. Thiede, T. Mishurova, S. Evsevleev, I. Serrano-Munoz, C. Gollwitzer, G. Bruno, 3D Shape Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT, Quantum Beam Science 3/1 (2019) 3. DOI: https://doi.org/10.3390/qubs3010003
  • [38] Powder specification AP&C Ti-6AI-4V, 2021. Available from: https://www.advancedpowders.com/powders/titanium/ti-6al-4v-5
  • [39] Powder specification Pyrogenesis Ti-6Al-4V, 2021. Available from: https://www.pyrogenesis.com/wp-content/uploads/2019/10/PyroGenesis-Additive-PRODUCT-SPEC-SHEET-Ti64-Grade-23-ELI-15-45-microns-1.pdf
  • [40] S.E. Brika, M. Letenneur, C.A. Dion, V. Brailovski, Influence of particle morphology and size distribution on the powder flowability and laser powder bed Fusion manufacturability of Ti-6Al-4V alloy, Additive Manufacturing 31 (2020) 100929. DOI: https://doi.org/10.1016/j.addma.2019.100929
  • [41] J. Grubbs, K. Tsaknopoulos, C. Massar, B. Young, A. O’Connell, C. Walde, A. Birt, M. Siopis, D. Cote, Comparison of laser diffraction and image analysis techniques for particle size-shape characterization in additive manufacturing applications, Powder Technology 391 (2021) 20-33. DOI: https://doi.org/10.1016/j.powtec.2021.06.003
  • [42] H. Gu, H. Gong, J.J.S. Dilip, D. Pal, A. Hicks, H. Doak, B.E. Stucker, Effects of Powder Variation on the Microstructure and Tensile Strength of Ti6Al4V Parts Fabricated by Selective Laser Melting, International Journal of Powder Metallurgy 51 (2015) 35-42.
  • [43] B. Fotovvati, E. Asadi, Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts, The International Journal of Advanced Manufacturing Technology 104 (2019) 2951-2959. DOI: https://doi.org/10.1007/s00170-019-04184-1
  • [44] R.-P. Guo, L. Xu, B.Y.-P. Zong, R. Yang, Characterization of Prealloyed Ti–6Al–4V Powders from EIGA and PREP Process and Mechanical Properties of HIPed Powder Compacts, Acta Metallurgica Sinica (English Letters) 30/8 (2017) 735-744. DOI: https://doi.org/10.1007/s40195-017-0540-4
  • [45] M. Iebba, A. Astarita, D. Mistretta, I. Colonna, M. Liberini, F. Scherillo, C. Pirozzi, R. Borrelli, S. Franchitti, A. Squillace, Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components, Journal of Materials Engineering and Performance 26 (2017) 4138-4147. DOI: https://doi.org/10.1007/s11665-017-2796-2
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c9550fc-6e0d-4121-8548-76e23ba8ba74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.