Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
A tunable diode laser absorption spectrometer was developed for trace acetylene gas analysis, the system performance was evaluated by combing an appropriate digital signal processing methods, i.e., Savitzky–Golay smoothing and differentiation algorithm. The calculation of the derivative spectra by this method is accompanied by simultaneous data smoothing. Based on the 2nd deriv- ative spectra detection method, the Allan variance technique indicates a C2H2 detection limit of 1.7ppm for 1-s averaging time, and a minimum noise level of 62ppb (parts per billion), at the optimum integration time of ~60s. The calculated 2nd derivative spectra with better resolution, lower detection limits, save signal processing time, and improve the ability to distinguish unresolved spectral signals.
Czasopismo
Rocznik
Tom
Strony
353--363
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, 230601 Hefei, China.
autor
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, 230601 Hefei, China.
autor
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, 230601 Hefei, China.
autor
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, 230601 Hefei, China.
autor
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, 230601 Hefei, China.
autor
- Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Anhui University, 230601 Hefei, China.
Bibliografia
- [1]LIZHU ZHANG, GUANG TIAN, JINGSONG LI, BENLI YU, Applications of absorption spectroscopy using quantum cascade lasers, Applied Spectroscopy 68(10), 2014, pp. 1095–1107.
- [2]ZHIQUN DING, HONGXIA ZHAO, XIAOHUI FANG, JILONG BAO, Trace detection of C2H2 using tunable diode laser absorption spectroscopy, Proceedings of SPIE 8192, 2011, article 81923B.
- [3]YAPING XIAO, JACOB D.J., TURQUETY S., Atmospheric acetylene and its relationship with CO as an indicator of air mass age, Journal of Geophysical Research: Atmospheres 112(D12), 2007, articleD12305.
- [4]ROTHMAN L.S., GORDON I.E., BABIKOV Y., BARBE A., BENNER D.C., BERNATH P.F., BIRK, L., BIZZOCCHI M., BOUDON V., BROWN L.R., CAMPARGUE A., CHANCE K., COUDERT L.H., DEVI V.M., DROUIN B.J., FAYT A., FLAUD J.M., GAMACHE R.R., HARRISON J., HARTMANN, C., HILL J.M., HODGES J.T., JACQUEMART D., JOLLY A., LAMOUROUX J., LEROY R.J., LI G., LONG D., MACKIE C.J., MASSIE S.T., MIKHAILENKO S., MÜLLER H.S.P., NAUMENKO O.V., NIKITIN A.V., ORPHAL J., PEREVALOV V.I., PERRIN A., POLOVTSEVA E.R., RICHARD C., SMITH M.A.H., STARIKOVA E., SUNG K., TASHKUN S.A., TENNYSON J., TOON G.C., TYUTEREV V.G., WAGNER G., The HITRAN2012 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer 130, 2013, pp. 4–50.
- [5]WERLE P., A review of recent advances in semiconductor laser based gas monitors, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 54(2), 1998, pp. 197–236.
- [6]RUSCIANO G., PESCE G., PIGNATIELLO F., SASSO A., Difference-frequency-generator-based spectrometer at 3 μm for high-sensitivity C2H2 and H2O detection, Optics Express 11(23), 2003, pp. 3010–3021.
- [7]FAIST J., CAPASSO F., SIVCO D.L., SIRTORI C., HUTCHINSON A.L., CHO A.Y., Quantum cascade laser, Science 264(5158), 1994, pp. 553–556.
- [8]SAJID M.B., JAVED T., FAROOQ A., High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm, Journal of Quantitative Spectroscopy and Radiative Transfer 155, 2015, pp. 66–74.
- [9]HERBST J., SCHERER B., SINGER F., ERB J., LAMBRECHT A., RATHKE C., FILIP S., KAPPLER J., FUCHS P., KOETH J., FRIEDL J., SCHLERETH T.W., SEMMEL J., HÖFLING S., WORSCHECH L., FORCHEL A., Acetylene measurement using quantum cascade lasers at 14 μm, Proceedings of SPIE 7945, 2011, article 79450J.
- [10]JINGSONG LI, XIAOMING GAO, WEIZHENG LI, ZHENSONG CAO, LUNHUA DENG, WEIXIONG ZHAO, MINGQIANG HUANG, WEIJUN ZHANG, Near-infrared diode laser wavelength modulation-based photo-acoustic spectrometer, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 64(2), 2006, pp. 338–342.
- [11]UTSAV K.C., NASIR E.F., FAROOQ A., A mid-infrared absorption diagnostic for acetylene detection, Applied Physics B 120(2), 2015, pp. 223–232.
- [12]WAGNER S., FISHER B.T., FLEMING J.W., EBERT V., TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames, Proceedings of the Combustion Institute 32(1), 2009, pp. 839–846.
- [13]GAGLIARDI G., GIANFRANI L., Trace-gas analysis using diode lasers in the near-IR and long-path techniques, Optics and Lasers in Engineering 37(5), 2002, pp. 509–520.
- [14]PRADHAN M., LINDLEY R.E., GRILLI R., WHITE I.R., MARTIN D., ORR-EWING A.J., Trace detection of C2H2 in ambient air using continuous wave cavity ring-down spectroscopy combined with sample pre-concentration, Applied Physics B 90(1), 2008, pp. 1–9.
- [15]RICHARD E.C., KELLY K.K., WINKLER R.H., WILSON R., THOMPSON T.L., MCLAUGHLIN RJ., SCHMELTEKOPF A.L., TUCK A.F., A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4 in the upper troposphere and lower stratosphere, Applied Physics B 75(2–3), 2002, pp. 183–194.
- [16]JINGSONG LI, BENLI YU, WEIXIONG ZHAO, WEIDONG CHEN, A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy, Applied Spectroscopy Reviews 49(8), 2014, pp. 666–691.
- [17]MARCHENKO D., NEERINCX A.H., MANDON J., ZHANG J., BOERKAMP M., MINK J., CRISTESCU S.M., TE LINTEL HEKKERT S., HARREN F.J.M., A compact laser-based spectrometer for detection of C2H2 in exhaled breath and HCN in vitro, Applied Physics B 118(2), 2015, pp. 275–280.
- [18]HAO DENG, JUAN SUN, BENLI YU, JINGSONG LI, Near infrared diode laser absorption spectroscopy of acetylene between 6523 and 6587cm–1 , Journal of Molecular Spectroscopy 314, 2015, pp. 1–5.
- [19]ZIMMERMANN B., KOHLER A., Optimizing Savitzky–Golay parameters for improving spectral reso- lution and quantification in infrared spectroscopy, Applied Spectroscopy 67(8), 2013, pp. 892–902.
- [20]CZARNECKI M.A., Resolution enhancement in second-derivative spectra, Applied Spectroscopy 69(1), 2015, pp. 67–74.
- [21]SAVITZKY A., GOLAY M.J.E., Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry 36(8), 1964, pp. 1627–1639.
- [22]JINGSONG LI, HAO DENG, PENGFEI LI, BENLI YU, Real time infrared gas detection based on an adaptive Savitzky–Golay algorithm, Applied Physics B 120(2), 2015, pp. 207–216.
- [23]BARAK P., Smoothing and differentiation by an adaptive-degree polynomial filter, Analytical Chemistry 67(17), 1995, pp. 2758–2762.
- [24]CHAO ZUO, QIAN CHEN, YINGJIE YU, ASUNDI A., Transport-of-intensity phase imaging using Savitzky–Golay differentiation filter – theory and applications, Optics Express 21(5), 2013, pp. 5346–5362.
- [25]JINGSONG LI, PARCHATKA U., FISCHER H., Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements, Applied Physics B 108(4), 2012, pp. 951–963.
- [26]JINGSONG LI, PARCHATKA U., FISCHER H., Development of field-deployable QCL sensor for simultaneous detection of ambient N2O and CO, Sensors and Actuators B: Chemical 182, 2013, pp. 659–667.
- [27]FAROOQ A., JEFFRIES J.B., HANSON R.K., Sensitive detection of temperature behind reflected shock waves using wavelength modulation spectroscopy of CO2 near 2.7 μm, Applied Physics B 96(1), 2009, pp. 161–173.
- [28]WERLE P., MÜCKE R., SLEMR F., The limits of signal averaging in atmospheric trace gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS), Applied Physics B 57(2), 1993, pp. 131–139.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c8e7faf-5def-460e-a3fb-a05c50e5884f