PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Sedimentary history and biota of the Zechstein Limestone (Permian, Wuchiapingian) of the Jabłonna Reef in Western Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Jabłonna Reef, one of the reefs formed in Wuchiapingian time in the western part of the Wolsztyn palaeo-High (SW Poland), is characterized by quite irregular outlines and consists of three separate reef bodies (ca. 0.5–1.5 km2 each; the thickness of the reef complex is usually >60 m). It is penetrated by four boreholes, which show two distinct phases of bryozoan reef development during deposition of the the Zechstein Limestone. The first one occurred early in the depositional history and botryoidal aragonitic cementation played a very important role in reef formation. This phase of bryozoan reef development terminated suddenly; one possible reason was that a relative change of sea level – first a fall and then a rise – disturbed the upwelling circulation. Consequently, bioclastic deposition predominated for a relatively long time until the second phase of bryozoan reef development occurred, but the latter was not accompanied by dubious early cementation. During this second phase, reticular fenestellid bryozoans were predominant. Subsequently, microbial reefs developed and abound in the upper part of the Zechstein Limestone sections. The general shallowing-upward nature of deposition in the Jab³onna Reef area resulted in reef-flat conditions with ubiquitous, microbial deposits, in the central part of the Jab³onna Reef. Then, the reef-flat started to prograde and eventually the entire Jab³onna Reef area became the site of very shallow, subaqueous deposition. Five biofacies are distinguished in the Jab³onna Reef sections: the Acanthocladia biofacies at the base, then mollusc-crinoid, brachiopod-bryozoan, Rectifenestella and at the top, stromatolite biofacies. They represent a shallowing-upward cycle, possibly with some important fluctuation recorded as the distinctive lithofacies boundary, corresponding to the Acanthocladia/mollusc-crinoid biofacies boundary. The 13C curves of the Jab³onna 2 and Jab³onna 4 boreholes permit correlation of the trends in the middle parts of both sections and confirm the strong diachroneity of the biofacies boundaries, with the exception of the roughly isochronous Acanthocladia/ mollusc-crinoid biofacies boundary. The presence of echinoderms and strophomenid brachiopods indicates that until deposition of the lower part of the Rectifenestella biofacies, conditions were clearly stenohaline. The subsequent elimination of stenohaline organisms and progressively poorer taxonomic differentiation of the faunal assemblage are characteristic for a slight, gradual rise in salinity. The taxonomic composition of organisms forming the Jab³onna Reef shows a similarity to reefs described from England and Germany, as well as the marginal carbonate platform of SW Poland. Filled fissures were recorded in the lower part of the Jabłonna Reef. The aragonite cementation recorded in some fissure fillings implies that they originated in rocks exposed on the sea floor and are neptunian dykes.
Rocznik
Strony
379--413
Opis fizyczny
Bibliogr. 100 poz., rys., tab., wykr.
Twórcy
autor
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Institute of Geological Sciences, University of Wrocław, Pl. Maksa Borna 9, 50-205 Wrocław, Poland
autor
  • Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
autor
  • Polish Oil and Gas Company, Bohaterów Westerplatte 15, 65–034 Zielona Góra, Poland
  • Polish Oil and Gas Company, Pl. Staszica 9, 64-920 Piła, Poland
Bibliografia
  • 1. Antonowicz, L. & Knieszner, L., 1984. Zechstein reefs of the Main Dolomite in Poland and their seismic recognition. Acta Geologica Polonica, 34: 81-94.
  • 2. Aplin, G., 1985. Diagenesis of the Zechstein Main Reef Complex, NE England. Unpublished Ph.D. Thesis, University of Nottingham.
  • 3. Assereto, R. & Folk, R. L., 1980. Diagenetic fabrics of aragonite, calcite, and dolomite in an ancient peritidal-spelean environment: Triassic Calcare Rosso, Lombardia, Italy. Journal of Sedimentary Petrology, 50: 371-394.
  • 4. Blendinger, W., Lohmeier, S., Bertini, A., Meissner, E. & Sattler, C. D., 2015. A new model for the formation of Dolomite in the Triassic dolomites, Northern Italy. Journal of Petroleum Geology, 38: 5-36.
  • 5. Bottinga, Y., 1968. Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. Journal of Physical Chemistry, 72: 800-808.
  • 6. Budd, D. A., Frost, E. L., Huntington, K. W. & Allwardt, P., 2013. Syndepositional deformation features in high-relief carbonate platforms: long-lived conduits for diagenetic fluids. Journal of Sedimentary Research, 83: 12-36.
  • 7. Davies, G. R., 1977. Former magnesian calcite and aragonite submarine cements in upper Paleozoic reefs of the Canadian Arctic: A summary. Geology, 5: 11-15.
  • 8. Denison, R. E. & Peryt, T. M., 2009. Strontium isotopes in the Zechstein (Upper Permian) anhydrites of Poland: evidence of varied meteoric contributions to marine brines. Geological Quarterly, 52: 159-166.
  • 9. Donovan, S. K., Hollingworth, N. T. J. & Veltkamp, C. J., 1986. British Permian crinoid “Cyathocrinites” ramosus (Schlotheim). Palaeontology, 29: 809-825.
  • 10. Dullo, W. C., Moussavian, E. & Brachert, T. C., 1990. The foralgal crust facies of the deeper fore reefs in the Red Sea: a deep diving survey by submersible. Geobios, 23: 261-281.
  • 11. Dyjaczyński, K., 2000. Wapień cechsztyński (Cal) i dolomit główny (Ca2) w rejonie Kościana oraz ich gazonośność. In: Biernacka, J. & Skoczylas, J. (eds), Przewodnik LXXI Zjazdu Polskiego Towarzystwa Geologicznego. Geologia i ochrona środowiska Wielkopolski. Bogucki Wydawnictwo Naukowe S.C., Poznań, pp. 215-223. [In Polish.]
  • 12. Dyjaczynski, K., Górski, M., Mamczur, S. & Peryt, T. M., 2001. Reefs in the basinal facies of the Zechstein Limestone (Upper Permian) of Western Poland. Journal of Petroleum Geology, 24: 265-285.
  • 13. Dyjaczyński, K. & Peryt, T. M., 2014. Controls on basal Zechstein (Wuchiapingian) evaporite deposition in SW Poland. Geological Quarterly, 58: 475-492.
  • 14. Elliott, J. M., Logan, A. & Thomas, M. L. H., 1996. Morphotypes of the foraminiferan Homotrema rubrum (Lamarck): Distribution and relative abundance on reefs in Bermuda. Bulletin of Marine Science, 58: 261-276.
  • 15. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C., 1953. Revised carbonate - water temperature scale. Geological Society of America Bulletin, 64: 1315-1326.
  • 16. Ernst, A., 2001. Bryozoa of the Upper Permian Zechstein Formation of Germany. Senckenbergiana Lethaea, 81: 135-181.
  • 17. Fheed, A., Swierczewska, A. & Krzyżak, A., 2015. The isolated Wuchiapingian (Zechstein) Wielichowo Reef and its sedimentary and diagenetic evolution, SW Poland. Geological Quarterly, 59: 762-780.
  • 18. Flügel, E., 2010. Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. 2nd Edition. Springer, Heidelberg, 984 pp.
  • 19. Frost, E. L. & Kerans, C., 2009. Platform-margin trajectory as a control on syndepositional fracture patterns, Canning Basin, Western Australia. Journal of Sedimentary Research, 79: 44-55.
  • 20. Frost, E. L. & Kerans, C., 2010. Controls on syndepositional fracture patterns, Devonian reef complexes, Canning Basin, Western Australia. Journal ofStructural Geology, 32: 12311249.
  • 21. Füchtbauer, H., 1980. Composition and diagenesis of a stromatolitic bryozoan bioherm in the Zechstein 1 (northwestern Germany). Contributions to Sedimentology, 9: 233-251.
  • 22. Garcia-Fresca, B., Lucia, F. J., Sharp, J. M., Jr. & Kerans, C., 2012. Outcrop-constrained hydrogeological simulations of brine reflux and early dolomitization of the Permian San Andres Formation. American Association of Petroleum Geologists Bulletin, 96: 1757-1781.
  • 23. Ginsburg, R. N. & James, N. P., 1976. Submarine botryoidal aragonite in Holocene reef limestones, Belize. Geology, 4: 431436.
  • 24. Gischler, E. & Ginsburg, R. N., 1996. Cavity dwellers (coelobites) under coral rubble in southern Belize barrier and atoll reefs. Bulletin of Marine Science, 58: 570-589.
  • 25. Given, R. K. & Lohmann, K. C., 1985. Derivation of the original isotopic composition of Permian marine cements. Journal of Sedimentary Petrology, 55: 430-439.
  • 26. Górski, M., Gierszewska, D., Król, E., Urbańska, H. & Wilk, W., 2000. Lithofacies interpretation of 3D seismic data: key to success in the Zechstein Limestone reefs detection in the Permian Basin (on example of the Kościan Reef - western Poland). Przegląd Geologiczny, 48: 137-150. [In Polish, with English summary and figure captions.]
  • 27. Grammer, G. M., Ginsburg, R. N., Swart, P. K., McNeiIl, D. F., Jull, A. J. T. & Prezbindowski, D. R., 1993. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. Journal of Sedimentary Petrology, 63: 983-989.
  • 28. Grotzinger, J. P. & Knoll, A. H., 1995. Anomalous carbonate precipitates: Is the Precambrian key to the Permian? Palaios, 10: 578-596.
  • 29. Hara, U., Słowakiewicz, M. & Raczyński, P., 2013. Bryozoans (trepostomes and fenestellids) in the Zechstein Limestone (Wuchiapingian) of the North Sudetic Basin (SW Poland): palaeoecological implications. Geological Quarterly, 57: 417-432.
  • 30. Harris, P. M. & Kenter, J. A. M., 2008. Steep microbial-dominated platform margins - examples and implications. Search and Discovery Article #40298 (Adapted from oral presentation at AAPG Annual Convention, Salt Lake City, Utah, May 11-14, 2003). http://www.searchanddiscovery.com/documents/ 2008/ 08094harris35/index.htm
  • 31. Hayward, A. B., Robertson, A. H. F. & Scoffin, T. P., 1996. Miocene patch reefs from a Mediterranean marginal terrigenous setting in Southwest Turkey. SEPM Concepts in Sedimentology and Paleontology, 5: 317-332.
  • 32. Hollingworth, N. & Pettigrew, T., 1988. Zechstein Reef Fossils and their Palaeoecology. Palaeontological Association. University Printing House, Oxford, 75 pp.
  • 33. Hollingworth, N. T. J. & Tucker, M. E., 1987. The Upper Permian (Zechstein) Tunstall Reef of North East England: Palaeoecology and early diagenesis. Lecture Notes in Earth Sciences, 10: 23-50.
  • 34. Howarth, R. J. & McArthur, J. M., 1997. Statistics for strontium isotope stratigraphy. A robust LOWESS fit to the marine Sr-isotope curve for 0-206 Ma, with look-up table for the derivation of numerical age. Journal of Geology, 105: 441-456.
  • 35. Hryniv, S. & Peryt, T. M., 2010. Strontium distribution and celestite occurrence in Zechstein (Upper Permian) anhydrites of West Poland. Chemie der Erde, 70: 137-147.
  • 36. James, N. P. & Choquette, P. W., 1990. Limestones - the meteoric diagenetic environment. In: Macillreath, I. A. & Morrow, D. W. (eds), Diagenesis, Volume. 11. Geoscience Canada, pp. 161-194.
  • 37. Jasionowski, M., Peryt, D. & Peryt, T. M., 2012. Neptunian dykes in the Middle Miocene reefs of western Ukraine: preliminary results. Geological Quarterly, 56: 881-894.
  • 38. Jasionowski, M., Peryt, T. M. & Durakiewicz, T., 2014. Polyphase dolomitisation of the Wuchiapingian Zechstein Limestone (Ca1) isolated reefs (Wolsztyn Palaeo-Ridge, Fore-Sudetic Monocline, SW Poland). Geological Quarterly, 58: 493-510.
  • 39. Kabanov, P., 2003. The Upper Moscovian and Basal Kasimovian (Pennsylvanian) of Central European Russia: facies, subaerial exposures and depositional model. Facies, 49: 243-270.
  • 40. Kerkmann, K., 1969. Riffe und Algenbänke im Zechstein von Thüringen. Freiberger Forschungshefte, C252: 1-85.
  • 41. Kiersnowski, H., Peryt, T. M., Buniak, A. & Mikołajewski, Z., 2010. From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland. Geological Journal, 44: 319-335.
  • 42. Kotarba, M. J., Peryt, T. M., Kosakowski, P. & Więcław, D., 2006. Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south-west Poland. Marine and Petroleum Geology, 23: 371-386.
  • 43. Kozur, H., 1989. The Permian-Triassic boundary in marine and continental sediments. Zentralblatt für Geologie und Paläontologie, TeilI, 1988 (11/12): 1245-1277.
  • 44. Kozur, H., 1994. The correlation of the Zechstein with marine standard. Jahrbuch der Geologischen Bundesanstalt, 137: 85-103.
  • 45. Land, L. S. & Moore, C. H., 1980. Lithification, micritization and syndepositional diagenesis of biolithites on the Jamaican island slope. Journal of Sedimentary Petrology, 50: 357-370.
  • 46. Logan, A., Mathers, S. M. & Thomas, M. L. H., 1984. Sessile invertebrate coelobite communities from reefs of Bermuda: Species composition and distribution. Coral Reefs, 2: 205-213.
  • 47. Lorenc, S., 1975. Petrography and facies differentiation in the Werra limestones and anhydrite rocks, Fore-Sudetic Monocline, SW Poland. Geologia Sudetica, 10: 59-101. [In Polish, with English summary.]
  • 48. Loucks, R. G. & Folk, R. L., 1976. Fanlike rays of former aragonite in Permian Capitan Reef pisolite. Journal of Sedimentary Petrology, 46: 483-485.
  • 49. Mamczur, S. & Czekański, E., 2000. Oil and gas deposit Barnówko-Mostno-Buszewo and exploration for hydrocarbon deposits in the Kościan-Wielichowo area. Oil and Gas News from Poland, 10: 47-52.
  • 50. Marshall, J. F. & and Davies, P. J., 1981. Submarine lithification on windward reef slopes: Capricorn-Bunker Group, southern Great Barrier Reef. Journal of Sedimentary Petrology, 51: 953-960.
  • 51. Mazzullo, S. J., 1980. Calcite pseudospar replacive of marine acicular aragonite, and implications for aragonite cement diagenesis. Journal of Sedimentary Petrology, 50: 409-422.
  • 52. Mazzullo, S. J. & Cys, J. M., 1979. Marine aragonite sea-floor growths and cements in Permian phylloid algal mounds, Sacramento Mountains, New Mexico. Journal of Sedimentary Petrology, 49: 917-936.
  • 53. McArthur, J. M., Howarth, R. J. & Bailey, T. R., 2001. Strontium isotope stratigraphy: LOWESS Version 3: Best fit to the marine Sr-isotope curve for 0-509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology, 109: 155-170.
  • 54. Melim, L. A. & Scholle, P. A., 1991. The forereef facies of the Permian Capitan Formation: the role of sediment supply versus sea-level changes. Journal of Sedimentary Research, 65: 107-118.
  • 55. Ortí, F., 2010. Selenite facies in marine evaporites: a review. IAS Special Publication, 43: 431-464.
  • 56. Ortí Cabo, F., Pueyo Mur, J. J., Geisler-Cussey, D. & Dulau, N., 1984. Evaporitic sedimentation in the coastal salinas of Santa Pola (Alicante, Spain). Revista d’Investigacions Geologiques, 38/39: 169-220.
  • 57. Palmieri, V. & Jell, J. S., 1985. Recruitment of encrusting foraminifers on Heron Reef, Great Barrier Reef (Queensland, Australia). Proceedings of the Fifth International Coral Reef Congress, Tahiti, 5: 221-226.
  • 58. Paul, J., 1980. Upper Permian algal stromatolitic reefs, Harz Mountains (F. R. Germany). Contributions to Sedimentology, 9: 253-268.
  • 59. Paul, J., 1987. Der Zechstein am Harzrand: Querprofil über eine permische Schwelle. In: Kulick, J. & Paul, J. (eds), Internationales Symposium Zechstein 1987, Exkursionsführer II. Subkommission PERM/TRIAS der Stratigraphischen Kommission DUGW/IUGS, Wiesbaden, pp. 195-293.
  • 60. Paul, J., 1991. Zechstein carbonates - Marine episodes of a hypersaline sea. Zentralblatt für Geologie und Paläontologie, Teil I, 1029-1045.
  • 61. Paul, J., 1995. Stromatolite reefs of the Upper Permian Zechstein Basin (Central Europe). Facies, 32: 28-31.
  • 62. Paul, J., 2010. Zechstein reefs in Germany. In: Doornenbal, J. C. & Stevenson, A. G. (eds), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten, pp. 142-144.
  • 63. Payne, J. L., Lehrmann, D. J., Christensen, S., Jiayong Wei & Knoll, A. H., 2006. Environmental and biological controls on the initiation and growth of a Middle Triassic (Anisian) reef complex on the Great bank of Guizhou, Guizhou Province, China. Palaios, 21: 325-343.
  • 64. Peryt, D., Peryt, T. M., Raczyński, P. & Chłódek, K., 2012. Foraminiferal colonization related to the Zechstein (Lopingian) transgression in the western part of the Wolsztyn Palaeo-Ridge area, Western Poland. Geological Quarterly, 56: 529-546
  • 65. Peryt, T. M., 1978. Sedimentology and paleoecology of the Zechstein Limestone (Upper Permian) in the Fore-Sudetic area (western Poland). Sedimentary Geology, 20: 217-243.
  • 66. Peryt, T. M., 1981. Former aragonitic submarine hemispheroids associated with vadose deposits, Zechstein Limestone (Upper Permian), Fore-Sudetic area, western Poland. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1981(9), 559-570.
  • 67. Peryt, T. M., 1984. Sedimentation and early diagenesis of the Zechstein Limestone in Western Poland. Prace Instytutu Geologicznego, 109: 1-80. [In Polish, with English summary and figure captions.]
  • 68. Peryt, T. M., 1986a. Zechstein Stromaria (=Archaeolithoporella)- cement reefs in Thuringia. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1986(5), 307-316.
  • 69. Peryt, T. M., 1986b. Chronostratigraphical and lithostratigraphical correlations of the Zechstein Limestone of Central Europe. Geological Society Special Publications, 22: 201-207.
  • 70. Peryt, T. M., Durakiewicz, T., Kotarba, M. J., Oszczepalski, S. & Peryt, D., 2012b. Carbon isotope stratigraphy of the basal Zechstein (Lopingian) strata in Northern Poland and its global correlation. Geological Quarterly, 56: 285-298.
  • 71. Peryt, T. M., Geluk, M. C., Mathiesen, A., Paul, J. & Smith, K., 2010a. Zechstein. In: Doornenbal, J. C. & Stevenson, A. G. (eds), Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications b.v., Houten, pp. 123-147.
  • 72. Peryt, T. M., Hałas, S. & Hryniv, S. P., 2010b. Sulfur and oxygen isotope signatures of Late Permian Zechstein anhydrites, West Poland: Seawater evolution and diagenetic constraints. Geological Quarterly, 54: 387-400.
  • 73. Peryt, T. M., Hałas, S. & Peryt, D., 2015. Carbon and oxygen isotopic composition and foraminifera of condensed basal Zechstein (Upper Permian) strata in western Poland: environmental and stratigraphic implications. Geological Journal, 50: 446-464.
  • 74. Peryt, T. M., Hoppe, A., Bechstädt, T., Köster, J., Pierre, C. & Richter, D. K., 1990. Late Proterozoic aragonitic cement crusts, Bambui Group, Minas Gerais, Brazil. Sedimentology, 37: 279-286.
  • 75. Peryt, T. M., Hryniv, S. P. & Anczkiewicz, R., 2010c. Strontium isotope composition of Badenian (Middle Miocene) Ca-sulphate deposits in West Ukraine: a preliminary study. Geological Quarterly, 54: 465-476.
  • 76. Peryt, T. M. & Peryt, D., 2012. Geochemical and foraminiferal records of environmental changes during the Zechstein Limestone (Lopingian) deposition in northern Poland. Geological Quarterly, 56: 187-198.
  • 77. Peryt, T. M., Piątkowski, T. S. & Wagner, R., 1978. Lithology and paleogeography of the Zechstein carbonate horizons. In: Depowski, S. (ed.), Lithofacies-Paleogeographical Atlas of the Permian of Platform Areas of Poland, Textual Part. Instytut Geologiczny, Warszawa, pp. 21-23.
  • 78. Peryt, T. M., Raczyński, P., Peryt, D. & Chłódek, K., 2012a. Upper Permian reef complex in the basinal facies of the Zechstein Limestone (Ca1), western Poland. Geological Journal, 47: 537-552.
  • 79. Playford, P. E., 1984. Platform-margin and marginal-slope relationships in Devonian reef complexes of the Canning Basin: The Canning Basin Western Australia. In: Purcell, P. G. (ed.), Proceedings of the Geological Society of Australia and Petrological Exploration Society of Australia Symposium, Perth, Western Australia. Geological Society of Australia, Perth, pp. 189-214.
  • 80. Raczyński, P., 2000. Zespoły organizmów w kompleksie rafowym wapienia cechsztyńskiego (Ca1) na wyniesieniu wolsztyńskim. Przegląd Geologiczny, 48: 469-470. [In Polish].
  • 81. Reich, M., 2007. Linguaserra spandeli sp. nov. (Echinodermata: Ophiocistioidea) from the Late Permian (Zechstein) of Thuringia, Germany. Annales de Paleontologie, 93: 317-330.
  • 82. Reitner, J., Thiel, V., Zankl, H., Michaelis, W., Worheide, G. & Gautret, P., 2000. Organic and biogeochemical patterns in cryptic microbialites. In: Riding, R. & Awramik S. M. (eds), Microbial Sediments. Spinger, Berlin, pp. 149-159.
  • 83. Sandberg, P., 1985. Aragonite cements and their occurrence in ancient limestones. SEPM Special Publication, 36: 33-57.
  • 84. Schlirf, M., 2011. A new classification concept for U-shaped spreite trace fossils. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260: 33-54.
  • 85. Smart, P. L., Palmer, R. J., Whitaker, F. & Wright, V. P., 1988. Neptunian dikes and fissure fills: An overview and account on some modern examples. In: James, N. P. & Choquette, P. W. (eds), Paleokarst. Springer, New York, pp. 149-163.
  • 86. Smith, D. B., 1981a. The Magnesian Limestone (Upper Permian) reef complex of north-eastern England. SEPM Special Publication, 30: 161-186.
  • 87. Smith, D. B., 1981b. Bryozoan-algal patch-reefs in the Upper Permian Lower Magnesian Limestone of Yorkshire, northeast England. SEPM Special Publication, 30: 187-202.
  • 88. Smith, D. B., 1994. Geology of the Country around Sunderland. Memoir of the British Geological Survey, sheet 21 (England and Wales). HMSO, London, 161 pp.
  • 89. Smith, D. B., 1995. Marine Permian in England. Chapman & Hall, London, 205 pp.
  • 90. Stanton, R. J. & Pray, L. C., 2004. Skeletal-carbonate neptunian dykes of the Permian Capitan reef, Texas, U.S.A. Journal of Sedimentary Research, 74: 805-816.
  • 91. Sumner, D. Y. & Grotzinger, J. P., 2000. Late Archean aragonite precipitation: Petrography, facies associations, and environmental significance. SEPMSpecial Publication, 67: 123-144.
  • 92. Szurlies, M., 2013. Late Permian (Zechstein) magnetostratigraphy in Western and Central Europe. Geological Society Special Publications, 376: 73-85.
  • 93. Vachard, D., Pille, L. & Gaillot, J., 2010. Palaeozoic Foraminifera: Systematics, palaeoecology and responses to global changes. Revue de Micropaléontologie, 53: 209-254.
  • 94. Veizer, J., 1989. Strontium isotopes in seawater through time. Annual Review of Earth and Planetary Sciences, 17: 141-167.
  • 95. Vennin, E., 2007. Coelobiontic communities in neptunian fissures of synsedimentary tectonic origin in Permian reef, southern Urals, Russia. Geological Society Special Publications, 275: 211-227.
  • 96. Warren, J. K., 1982. The hydrological setting, occurrence and significance of gypsum in late Quaternary salt lakes in South Australia. Sedimentology, 29: 609-637.
  • 97. Weidlich, O., 2002. Middle and Late Permian reefs - distributional patterns and reservoir potential. SEPM Special Publication, 72: 339-390.
  • 98. Wilkinson, B. H., Owen, R. M. & Carroll, A. R., 1985. Submarine hydrothermal weathering, global eustacy, and carbonate polymorphism in Phanerozoic marine oolites. Journal of Sedimentary Petrology, 55: 171-183.
  • 99. Yurewicz, D. A., 1977. The origin of the massive facies of the lower and upper Capitan Limestone (Permian), Guadalupe Mountains, New Mexico and West Texas. In: Hileman, M. E. & Mazzullo, S. J. (eds), Upper Guadalupian Facies, Permian Reef Complex, Guadalupe Mountains, New Mexico and West Texas. SEPM Field Conference Guidebook, vol. 77-16. Permian Basin Section, Midland, Texas, pp. 45-92.
  • 100. Zampi, M., Benocci, S. & Focardi, S., 1997. Epibiont foraminifera of Sertella frigid (Waters) (Bryozoa, Cheilostomata) from Terranova Bay, Ross Sea, Antarctica. Polar Biology, 17: 363-370.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c8bb432-066d-496f-b37e-d2b6a9a261fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.