PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The adsorption mechanism of Al(III) and Fe(III) ions on bastnaesite surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The adsorption mechanism of Al(III) and Fe(III) ions on bastnaesite surfaces was investigated by a combination of DFT calculation, XPS analysis, adsorption isotherm study and adsorption kinetic investigations. DFT calculation results indicated that ≡CeOH0 and ≡CO3H0 are primary functional groups on bastnaesite surfaces. XPS analysis reveals that Al(III) and Fe(III) ions adsorbed onto the bastnaesite surfaces through the interaction between aluminium/iron hydroxide species and oxygen atoms of surface ≡CeOH0 groups. No interaction between aluminium/iron hydroxide species and ≡CO3H0 groups was detected. Adsorption isotherm studies demonstrated that the adsorption data of Al(III) and Fe(III) ions is fitted relatively well by Freundlich equations, the adsorption kinetic characteristics fitted to pseudo-second order model. Freundlich constants suggested favorable process for Al(III) and Fe(III) ions adsorption, and each adsorbed metal hydroxide specie complex with at least two oxygen atoms of surface ≡CeOH0 groups.
Słowa kluczowe
Rocznik
Strony
97--107
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China.
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China.
autor
  • National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, China.
Bibliografia
  • CARTER, MC., KILDUFF, JE., WEBER, WJ., 1995. Site energy distribution analysis of preloaded adsorbents. Environ. Sci. Technol. 29(7), 1773.
  • CHI, R., WANG, D., 2014. Mineral processing of rare earth minerals. Science Press, Chap. 1.
  • CUI, J., HOPE, G A., Buckley, A N., 2012. Spectroscopic investigation of the interaction of hydroxamate with bastnaesite (cerium) and rare earth oxides. Miner. Eng. 36-38(5), 91-99.
  • DENG, J., WEN, S., XIAN, Y., LIU, J., BAI, S., 2013. New discovery of unavoidable ions source in chalcopyrite flotation pulp: Fluid inclusions. Miner. Eng. 42(3), 22-28.
  • DENG, R., HU, Y., KU, J., ZUO, W., YANG, Z., 2017. Adsorption of Fe (III) on smithsonite surfaces and implications for flotation. Colloid. Surface. A. 533, 308–315.
  • FENG, Q., ZHAO, W., WEN, S., CAO, Q., 2017. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Sep. Purif. Technol. 178, 193-199.
  • FREUNDLICH, HMF., 1915, Uber die adsorption in lunsungen. J. Phys. Chem. 57, 387-470.
  • HE, H., ALBERTI, K., BARR, T L., KLINOWSKI, J., 1993. ESCA studies of aluminophosphate molecular sieves. J. Phys. Chem. 97(51), 13703-13707.
  • HERRERA-URBINA, R., PRADIP, FUERSTENAU, D. W., 2013. Electrophoretic mobility and computations of solid-aqueous solution equilibria for the bastnaesite-H2O system. Miner. Metall. Proc. 30(1), 18-23.
  • HO, YS., MCKAY, G., 1999. The sorption of lead(II) ions on peat. Water. Res. 33(2), 578-584.
  • HO, YS., MCKAY, G., 1999. Pseudo-second order model for sorption processes. Process. Biochem. 34(5), 451-465.
  • JIA, M., 2001. Surface structure study of silicate minerals and its adsorption mechanism for metal ions. Northeastern University, 61-109.
  • KOTANI, A., OGASAWARA, H., 1992. Theory of core-level spectroscopy of rare-earth oxides. J. Elec. Spec. 60(4), 257-299.
  • LANGMUIR, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Chem. Phys. 40(12), 1361-1403.
  • MOULDER, JF., CHASTAIN, J., KING, RCJ., 1979. Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Chem. Phys. Lett. 220(1), 7-10.
  • MULLET, M., KHARE, V., RUBY, C., 2010. XPS study of Fe(II) and Fe(III) (oxy)hydroxycarbonate green rust compounds. Sur. Interf. Ana. 40(3-4), 323-328.
  • MULLINS, DR., HUNTLEY, DR., OVERBURY, SH., 1998. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf. Sci. 409(2), 307-319.
  • NANO, GV., STRATHMANN, TJ., 2008. Application of surface complexation modeling to the reactivity of iron (II) with nitroaromatic and oxime carbamate contaminants in aqueous TiO2 suspensions. J. Colloid. Interf. Sci. 321(2), 350-359.
  • NI, Y., HUGHES, J.M., MARIANO, A.M., 1993. The atomic arrangement of bastnasite-(Ce), Ce (C03) F, and structural elements of synchysite-(Ce), rontgenite-(Ce), and parisite-(Ce). Am. Mineral. 78, 415-418.
  • NOWAK, P., LAAJALEHTO, K., KARTIO, I., 2000. A flotation related X-ray photoelectron spectroscopy study of the oxidation of galena surface. Colloid. Surface. A. 161(3), 447-460.
  • PARKS, G.A., 1990. Surface Energy and Adsorption at Mineral/Water Interfaces: An Introduction. Set. Ana. 9(1-2), 1-2.
  • PIEROTTI, RA., SIEMIENIEWSKA, T., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure. App. Chem. 57(4), 603-619.
  • REN, J., SONG, S., 2000. Selective flotation of bastnaesite from monazite in rare earth concentrates using potassium alum as depressant. Int. J. Miner. Process. 59(3), 237-245.
  • SAWADA, K., ABDEL-AAL, K., TAN, K., SATOH, K., 2005. Adsorption of lanthanoid ions on calcite. Dalton. T. 249(20), 3291-3296.
  • WEI, J., WU, D., 2000. Ionize and complex reaction mode of mineral/water interface. Adv. Eart. Sci. (01), 90-96.
  • WU, D., 2000. Surface functional groups and surface reaction. Geol. J. Chin. Un. (02), 225-232.
  • WU, H., WU, D., PENG, J., 1998. Experimental study of the reaction between metal ions and quartz surface. Geochemistry. (6), 521-531.
  • XU, H., 2015. The adsorption mechanism of metal ions on scheelite surfaces and implications for flotation. Jiangxi University of Science and Technology, 24-72.
  • ZHANG, X., 2014. Surface chemistry aspects of fluorite and bastnaesite flotation systems. The University of Utah, 100-102.
  • ZHOU, D., LI, X., 1996. Adsorption characteristics of heavy metal ions onto soil in mass-action model. J. Environ, Sci. 16(4), 425-430.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c83f18b-bce5-4ea3-83c7-3e0ee90257f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.