PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Taguchi method for the design of cement mortars containing waste materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Industries related to the acquiring of building materials may soon face a shortage of natural resources and an associated increase in costs of their acquisition. Therefore, it is necessary to look for possible ways to reduce the exploitation of natural resources and instead use recycled raw materials. Such policies fit into one of the most important trends in modern construction, which is sustainable development. In the conducted research, the Taguchi method was utilized in order to investigate the impact of modifying cement mortars with rubber and cork waste on the selected properties of the obtained composites. Thanks to the above method, we managed to obtain the desired information about mortars in a shorter time and at a lower cost than using traditional testing methods. Using the selection in planning method, we confirmed that rubber waste can be a good substitute for sand in mortars.
Rocznik
Strony
15--26
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology
  • Rzeszow University of Technology
  • Rzeszow University of Technology
Bibliografia
  • 1.Akinyemi, B. & Omoniyi, T. (2018) Properties of latex polymer modified mortars reinforced with waste bamboo fibers from construction waste. Buildings, 8, 11, e0149.
  • 2.Alves, A.V., Vieira, T.F., de Brito, J. & Correia, J.R. (2014) Mechanical properties of structural concrete with fine recycled ceramic aggregates. Construction and Building Materials, 64, 103-113.
  • 3.Barnat-Hunek, D., Siddique, R. & Łagód, G. (2017) Properties of hydrophobised lightweight mortars with expanded cork. Construction and Building Materials, 155, 15-25.
  • 4.Brás, A., Gonçalves, F. & Faustino, P. (2014) Cork-based mortars for thermal bridges correction in a dwelling: Thermal performance and cost evaluation. Energy and Buildings, 72, 296-308.
  • 5.Brás, A., Leal, M. & Faria, P. (2013) Cement-cork mortars for thermal bridges correction. Comparison with cement-EPS mortars performance. Construction and Building Materials, 49, 315-327.
  • 6.Deng, D., Sheng, J. & Wang, Y. (2019) Strength and constitutive model of recycled concrete under biaxial compression. KSCE Journal of Civil Engineering, 23(2), 699-710.
  • 7.Dębska, B. (2015) Modification of polymer composites by polyethylene terephthalate waste. In: Visakh, P.M. & Liang, M. (Eds.) Poly(ethylene Terephthalate) Based Blends, Composites and Nanocomposites. Amsterdam, Elsevier, 195-212.
  • 8.Debska, B.J., Dobrowolski, L. & Debska, B. (2018) Experiment-design methods in innovative polymer material planning. Journal of Applied Polymer Science, 135(46), e46761.
  • 9.Dębska, B. & Lichołai, L. (2016) Resin composites with high chemical resistance for application in civil engineering. Periodica Polytechnica-Civil Engineering, 60, 281-287.
  • 10.Dębska, B. & Lichołai, L. (2017) Analysis of bending strength of resin mortars that are at risk of long-term exposure to environmental corrosives. IOP Conference Series: Earth and Environmental Science, 95, e042015.
  • 11.Dębska, B., Lichołai, L. & Szyszka, J. (2018) Innovative composite on the basis of an aerogel mat with an epoxy resin modified with PET waste and PCM. E3S Web of Conferences, 44, e00031.
  • 12.Evangelista, L. & de Brito, J. (2017) Flexural behaviour of reinforced concrete beams made with fine recycled concrete aggregates. KSCE Journal of Civil Engineering, 21(1), 353-363.
  • 13.Ferdous, W., Manalo, A. & Aravinthan, T. (2017) Bond behaviour of composite sandwich panel and epoxy polimer matrix: Taguchi design of experiments and theoretical predictions. Construction and Building Materials, 145, 76-87.
  • 14.Fraj, A.B., Kismi, M. & Mounanga, P. (2010) Valorization of coarse rigid polyurethane foam waste in lightweight aggregate concrete. Construction and Building Materials, 24, 1069-1077.
  • 15.Galvão, J.C.A., Portella, K.F., Joukoski, A., Mendes, R. & Ferreira, E.S. (2011) Use of waste polymers in concrete for repair of dam hydraulic surfaces. Construction and Building Materials, 25, 1049-1055.
  • 16.Gupta, T., Chaudhary, S. & Sharma, R.K. (2014) Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate. Construction and Building Materials, 73, 562-574.
  • 17.Herki, B.M.A. (2017) Combined effects of densified polystyrene and unprocessed fly ash on concrete engineering properties. Buildings, 7, 3, e0077.
  • 18.Issa, C.A. & Salem, G. (2013) Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Construction and Building Materials, 42, 48-52.
  • 19.Kanchanapiya, P., Methacanona, P. & Tantisattayakul, T. (2018) Techno-economic analysis of light weight concrete block development from polyisocyanurate foam waste. Resources, Conservation and Recycling, 138, 313-325.
  • 20.Kim, S.B., Yi, N.H., Kim, H.Y., Kim, J.H.J. & Song, Y.C. (2010) Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement and Concrete Composites, 32, 232-240.
  • 21.Kou, S.C., Lee, G., Poon, C.S. & Lai, W.L. (2009) Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Management, 29, 621-628.
  • 22.Kowalczyk, M. (2014) Application of Taguchi and Anova methods in selection of process parameters for surface roughness in precision turning of titanium. Advances in Manufacturing Science and Technology, 38.
  • 23.Laukaitis, A., Žurauskas, R. & Kerienė, J. (2005) The effect of foam polystyrene granules on cement composites properties. Cement and Concrete Composites, 27, 41-47.
  • 24.Lichołai, L., Dębska, B. & Krasoń, J. (2019) Assessment of the applicability of a phase change material in horizontal building partitions. IOP Conference Series: Earth and Environmental Science, 214, e012042.
  • 25.Ling, T.-C., Poon, Ch.-S. & Wong, H.-W. (2013) Management and recycling of waste glass in concrete products: Current situations in Hong Kong. Resources, Conservation and Recycling, 70, 25-31.
  • 26.Liu, Y., Shi, C., Zhang, Z. & Li, N. (2019) An overview on the reuse of waste glasses in alkali- -activated materials. Resources, Conservation and Recycling, 144, 297-309.
  • 27.Mahdi, F., Abbas, H. & Khan, A.A. (2010) Strength characteristics of polymer mortar and concrete using different compositions of resins derived from post-consumer PET bottles. Construction and Building Materials, 24, 25-36.
  • 28.Matos, A.M., Nunes, S. & Sousa-Coutinho, J. (2015) Cork waste in cement based materials. Materials Design, 85, 230-239.
  • 29.Musiał, M. (2018) Analysis of the impact of selected factors on the effectiveness of using PCM in mobile window insulation. E3S Web of Conferences, 49, e00073.
  • 30.Ngohpok, Ch., Sata, V., Satiennam, T., Klungboonkrong, P. & Chindaprasirt, P. (2018) Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. KSCE Journal of Civil Engineering, 22(4), 1369-1376.
  • 31.Nóvoa, P.J.R.O., Ribeiro, M.C.S., Ferreira, A.J.M. & Marques, A.T. (2004) Mechanical characterization of lightweight polymer mortar modified with cork granulates. Composites Science and Technology, 64, 2197-2205.
  • 32.Panesar, D.K. & Shindman, B. (2012) The mechanical, transport and thermal properties of mortar and concrete containing waste cork. Cement and Concrete Composites, 34, 982-992.
  • 33.Rughooputh, R., Oogarah Rana, J., & Joorawon, K. (2017) Possibility of using fresh concrete waste in concrete for non structural civil. KSCE Journal of Civil Engineering, 21(1), 94-99.
  • 34.Schmidt, H. & Cieślak, M. (2008) Concrete with carpet recyclates: Suitability assessment by surface energy evaluation. Waste Management, 28, 1182-1187.
  • 35.Thomas, B.S. & Gupta, R.C. (2015) Long term behaviour of cement concrete containing discarded tire rubber. Journal of Cleaner Production, 102, 78-87.
  • 36.Thomas, B.S. & Gupta, R.C. (2016) A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews, 54, 1323-1333.
  • 37.Thomas, B.S., Gupta, R.C. & Panicker, V.J. (2015) Experimental and modelling studies on high strength concrete containing waste tire rubber. Sustainable Cities and Society, 19, 68-73.
  • 38.Thomas, B.S., Gupta, R.C. & Panicker, V.J. (2016) Recycling of waste tire rubber as aggregate in concrete: durability-related performance. Journal of Cleaner Production, 112, 504-513.
  • 39.Wongkvanklom, A., Posi, P., Khotsopha, B., Ketmala, Ch., Pluemsud, N., Lertnimoolchai, S. & Chindaprasirt, P. (2018) Structural lightweight concrete containing recycled lightweight concrete aggregate. KSCE Journal of Civil Engineering, 22(8), 3077-3084.
  • 40.Verian, K.P., Ashraf, W. & Cao, Y. (2018) Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133, 30-49.
  • 41.Youssf, O., Mills, J.E. & Hassanli, R. (2016) Assessment of the mechanical performance of crumb rubber concrete. Construction and Building Materials, 125, 175-183.
  • 42.Zegardło, B., Szeląg, M., Ogrodnik, P. (2018) Concrete resistant to spalling made with recycled aggregate from sanitary ceramic wastes – The effect of moisture and porosity on destructive processes occurring in fire conditions. Construction and Building Materials, 173, 58-68.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c83a45e-4317-4585-a487-6e9b1b27b7b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.