PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of eigenfrequencies of the foot prosthesis with auxetic component layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, natural frequencies of a three-layered foot prosthesis are investigated. The model of foot prosthesis consisted of a three-layered base, which substitutes a human foot and an element in the shape of an arc that represents a shank of human. The base consists of three layers made of carbon fiber. In the lower part of the prosthesis, the auxetic layer is used as the inner layer. Numerical analysis is made for different parameters of the central layer: the thickness and the value of Poisson’s ratio. The simulations are used to investigate the influence of an auxetic layer on prosthesis vibrations and compare the impact of different parameters on results. Calculations are made using the finite element method implemented in Autodesk Fusion 360. The results show that the auxetic layer has a great impact on tolerance to vibrations and mobility.
Rocznik
Strony
art. no. 2020214
Opis fizyczny
Bibliogr. 22 poz., il. kolor, 1 rys.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, ul. Jana Pawla II 24, 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, ul. Jana Pawla II 24, 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, ul. Jana Pawla II 24, 60-965 Poznan, Poland
Bibliografia
  • 1. L. J. Gibson, The elastic and plastic behaviour of cellular materials, University of Cambridge, Churchill College (doctoral thesis) 1981.
  • 2. L. J. Gibson, M. F. Ashby, G. S. Schayer, C.I. Robertson, The mechanics of two dimensional cellular materials, Proc. Roy. Soc. Lond. A 382 (1982).
  • 3. R. F. Almgren, An isotropic three-dimensional structure with Poisson's ratio =−1, Journal of Elasticity 15 (1985).
  • 4. R. Lakes, Foam structures with a negative Poisson’s ratio, Science 235 (1987).
  • 5. W. A. Lipsett., A. I. Beltzera, Reexamination of dynamic problems of elasticity for negative Poisson's ratio, Journal of the Acoustical Society of America 84(6) (1988) 2179-2186.
  • 6. F. Scarpa, G. Tomlinson, Vibroacoustic behaviour of novel sandwich structures with negative Poisson's ratio core, Proceedings of the 23rd International Conference on Noise and Vibration Engineering, ISMA (1998) 803-807.
  • 7. F. Scarpa, C. Remillat, G. R. Tomlinson, Microstructural modelization of viscoelastic auxetic polymers, Proceedings of SPIE - The International Society for Optical Engineering 3672 (1999) 275-285.
  • 8. F. Scarpa, C. Remillat, F. P. Landi, G. Tomlinson, Damping modelization of auxetic foams, Proceedings of SPIE - The International Society for Optical Engineering 3989 (2000) 336-343.
  • 9. M. Ruzzene, L. Mazzarella, P. Tsopelas, F. Scarpa, Wave propagation in sandwich plates with periodic auxetic core, Journal of Intelligent Material Systems and Structures 13(9) (2002) 587-597.
  • 10. F. Scarpa, L. G. Ciffo, J. R. Yates, Dynamic properties of high structural integrity auxetic open cell foam, Smart Mater. Struct. 13 (2004) 49.
  • 11. G. Qin, Z. Qin, Negative Poisson’s ratio in two-dimensional honeycomb structures, npj Computational Materials 6(1) (2020) 51.
  • 12. M. Proffit, J. Kennedy, Dynamic response of auxetic structures, Vibroengineering Procedia 31 (2020) 1-6 159897.
  • 13. C. Li, H.-S. Shen, H. Wang, Z. Yu, Large amplitude vibration of sandwich plates with functionally graded auxetic 3D lattice core, International Journal of Mechanical Sciences 174 (2020) 105472.
  • 14. C. Li, H.-S. Shen, H. Wang, Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core, Nonlinear Dynamics 100(4) (2020) 3235-3252.
  • 15. J. Chen, X. Wen, Y. Shao, T. Li, Z. Du, Highly stretchable, stability, flexible yarn-fabric-based multi-scale negative Poisson’s ratio composites, Composite Structures 250 (2020) 112579.
  • 16. H. Yang, L. Ma, Design and characterization of axisymmetric auxetic metamaterials, Composite Structures 249 (2020) 112560.
  • 17. T. Strek, Forced Response of Plate with Viscoelastic Auxetic Dampers, Vibrations in Physical Systems 29 (2018) 2018003.
  • 18. T. Strek, A. Matuszewska, H. Jopek, Finite Elements Analysis of the Influence of the Covering Auxetic Layer of Plate on the Contact Pressure, Physica Status Solidi B 254(12) (2017) 1700103.
  • 19. T. Strek, J. Michalski, H. Jopek, Computational Analysis of the Mechanical Impedance of the Sandwich Beam with Auxetic Metal Foam Core, Physica Status Solidi B 256(1) (2018) 1800423.
  • 20. A. Airoldi, N. Novak, F. Sgobba, A. Gilardelli, M. Borovinšek, Foam-filled energy absorbers with auxetic behaviour for localized impacts, Materials Science and Engineering A 788 (2020) 139500.
  • 21. M. Dziaduszewska, M. Wekwejt, Composites in energy storing prosthetic feet, Europaen Journal of Medical Technologies 3(20) (2018) 16-22.
  • 22. A. F. Bower, Applied Mechanics of Solids, CRC Press, Taylor & Francis Group, Boca Raton (FL) 2010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7c836997-d09b-4491-835f-803e1235f9e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.