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Abstract 

In this paper, natural frequencies of a three-layered foot prosthesis are investigated. The model of foot prosthesis 

consisted of a three-layered base, which substitutes a human foot and an element in the shape of an arc that 
represents a shank of human. The base consists of three layers made of carbon fiber. In the lower part of the 

prosthesis, the auxetic layer is used as the inner layer. Numerical analysis is made for different parameters of 

the central layer: the thickness and the value of Poisson’s ratio. The simulations are used to investigate the 
influence of an auxetic layer on prosthesis vibrations and compare the impact of different parameters on results. 

Calculations are made using the finite element method implemented in Autodesk Fusion 360. The results show 

that the auxetic layer has a great impact on tolerance to vibrations and mobility. 

 

Keywords: natural frequencies, mode shapes, finite elements method, foot prosthesis 
 

1. Introduction 

It is well known that a designer understands the natural vibration frequencies of a system 

to ensure that they are not the same as excitation frequencies, thus ensuring safety 

standards. This is a key component in many fields like civil, aerospace, automotive or 

medical and biomedical engineering, where the loss of life and property is a major 

concern. Starting with hand calculations in the 1980s, computer simulations have made 

great breakthroughs to help improve the quality and robustness of design processes or 

constructions.  

Used materials as components of structures have a great influence on the properties of 

the whole structure. It is really important to use the proper ones. It is also crucial if we 

want to build structures with special properties. Engineers and researchers use typical 

materials as structural components. For many years they also investigate properties of 

structures composed with metamaterial or smart materials. There are materials with 

“negative properties” such as negative Poisson’s ratio, negative coefficient of thermal 

expansion, negative compressibility, negative reflective index, negative magnetic 

permeability, or negative permittivity, etc. 

Modern foot prosthesis is classified into three categories: passive, active, and hybrid 

prosthesis. To control the process of movement, adaptive foot prostheses are tools up in 

hardware constructions to achieve different functions. For example, to regenerate energy 
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series elastic actuators, coil spring and clutch motors are applied. Energy-saving 

mechanisms have been introduced to reduce the power requirement. Furthermore, 

researchers investigate the properties of currently used materials and tend to find ones that 

will improve energy stores. The most important requirement for modern foot prosthesis is 

light, elastic, and stable construction that ensures accumulation, storage, and release of 

energy during walking. Energy storing prosthetic feet (ESPE) is marked by these 

properties. They are made by composites with carbon and glass fibers, carbon fiber 

combined with epoxy resin, glass fiber combined with polyester. Significantly, 

manipulation of fiber’s type, the number of layers, the way of laying method, or combining 

properties of the same material determine the efficiency and dynamic behavior of foot 

prosthesis. 

In this paper, eigenfrequencies of foot prosthesis with the viscoelastic auxetic layer are 

studied. The auxetic layer is the core of the foot prosthesis base and lays between two 

layers made of carbon fiber. Different values of Poisson’s ratio (PR) and two values of 

thickness for the auxetic layer are compared. Calculations are made using the finite 

element method with Fusion 360 software. 

2. Cellular and auxetic materials 

Researchers were inspired by old structural material which is wood. It is the only 

significant building material that is grown. They wondered about their extraordinary 

properties and think how can convey them to other construction materials. It was the 

purpose of investigations in the thesis made between 1978 and 1981. Papers aimed to 

investigate why cellular material can be stiff and light, is a great insulator, are capable of 

accommodating large elastic deformations. Lora Jane Gibson [1] focused on the physical 

mechanism and used beam theory. It was admitted that material properties depend on 

shape and density. Moreover, deformations depend on elastic moduli E, G, and bending 

stiffness. This research began the next investigations. In 1982 authors [2] analyzed 

mechanisms that involve deformation of three-dimensional cellular solids or foams. The 

research compared to tests on rubber and metal models.  

A few years later Almgren [3] publishes his investigation about three-dimensional 

structure with Poisson’s ratio equals -1. Auxetic material was associated with negative PR 

(NPR). It means that such a material expands laterally when stretched. Common materials 

reduce the size after stretched load. In 1987 Lakes [4] presents foam structure, which 

exhibits a negative Poisson’s ratio. This property isn’t commonly observed in real 

materials. In isotropic material (materials, which don’t have identical values of a property 

in all directions) theoretically, the permissible range of Poisson’s ratio is from -1 to 0,5. 

Foams used in the research were produced from conventional low-density open-cell 

polymer foams. Lipsett and Beltzera [5] examined NPR materials and take to this purpose 

extreme value. Scarpa et. al. [6-10] investigated dynamic and acoustic performances of 

for example sandwich panels, auxetic polymers, and cellular materials. They admit that 

auxetic honeycombs are a good example of cellular materials with NPR behavior. 

Moreover, calculations gave a conclusion, that it is possible to obtain in sandwich beams 

enhanced stiffness per unit weight values and modal loss factors using two-phase cellular 
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solids. Geometry plays a significant role in research. Qin’s [11] research implies that the 

honeycomb structure is distinct from other known auxetic materials.  

In the past year, researchers focused on analyses of dynamic response and amplitude 

vibration auxetic structures [12-14]. Strek et. al. [18] presented the impact of the NPR in 

selected materials of the contact pressure values and deformations. Their research 

involved two cases: homogenous plate and layered plate with different PR values. For 

positive PR isn’t observed any dependence. In the first case for more negative values of 

PR, the contact pressure increases and decreases the length of the contact boundary.  

In a two-layered plate for greater thickness of the auxetic layer, there is greater contact 

pressure and lower displacement. Later Strek et. al. [19] investigated the influence of 

mechanical impedance on a sandwich beam with auxetic metalcore. Additionally, 

harmonic loads and different parameters were applied. Calculations imply that values of 

mechanical impedance are greater for higher values of density and the more negative value 

of PR of the core, the lower mobility. Other properties of auxetic materials were 

investigated by Airoldi et al. [20]. The authors proposed an innovative concept for energy 

absorption in case of localized impacts. The concept is based on the contraction of cellular 

structures with NPR under the impact, which is combined with the energy absorption 

capability of a foam filler. Composites in energy-storing prosthetic feet were investigated 

by Dziaduszewska et al [21].  

3. Mathematical model 

Eigenfrequencies or natural frequencies are certain discrete frequencies, at which a system 

is prone to vibrate. Natural frequencies appear in many types of systems, for example,  

as standing waves in a musical instrument or an electrical RLC circuit.  

When vibrating at a certain eigenfrequency, a structure deforms into a corresponding 

shape mode, the eigenmode. An eigenfrequency analysis can only provide the shape of 

the model, not the amplitude of any physical vibration. The true size of the deformation 

can only be determined if an actual excitation is known together with damping properties. 

Determining the eigenfrequencies of a structure is an important part of structural 

engineering. 

Hooke’s law for linear elasticity is usually written like [22] 

𝐒 = 𝐂: 𝛆,                                                              (1) 

where the stress tensor 𝐒 and the strain tensor 𝛆 are second-order tensors, while the 

constitutive tensor 𝐂 is a fourth-order tensor. The ‘:’ symbol means a contraction over two 

indices.  

The elasticity matrix for isotropic materials can be written in terms of Lamé parameters 

λ and μ, as follows 

𝐂 =

[
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where Lamé parameters can be expressed in terms of two elastic constants as  

𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
 and  𝜇 =

𝐸

2(1+𝜈)
, where 𝐸 is the Young modulus and 𝜈 is the PR.  

The Navier's equation of motion with zero volume force can be written as  

𝜌
∂2𝐮

∂𝑡2
− ∇ ∙ 𝐒 = 𝟎, (3) 

where ρ is the density, u is the vector of displacements and 𝐒 is the stress tensor. 

The equation of motion with the linear constitutive relation between stresses and 

deformations can be written as 

𝜌
∂2𝐮

∂𝑡2
− (𝜇∇𝟐𝐮 + (λ + 𝜇)∇∇ ∙ 𝐮) = 𝟎. (4) 

A harmonic displacement is defined by an equation as 

∂2𝐮

∂𝑡2
= −ω2𝐮, (5) 

where ω is forcing frequency. The displacement vector has a complex form and is defined 

as 

𝐮(𝐱) = 𝐮1(𝐱) + 𝑖𝐮2(𝐱) (6) 

and the harmonic displacement is a real part of the complex form 

𝐮(𝐱, 𝑡) = 𝑅𝑒[𝐮(𝐱)e−𝑖𝜔𝑡], (7) 

According to aforementioned equations, the harmonic equation of motion of linear elastic 

material fulfills the formula 

−𝜌𝜔2𝐮 − (𝜇∇𝟐𝐮 + (𝜆 + 𝜇)∇∇ ∙ 𝐮) = 𝟎. (8) 

The harmonic equation may be viewed as the eigenvalue equation.  

4. Model of the foot prosthesis 

In this paper, the modal frequencies study is performed to determine the eigenfrequencies 

of foot prosthesis. The model of the prosthesis was created for this test by the use of 

Inventor 2019 software. It consists of a three-layered base, which substitutes a human foot 

and an element in the shape of an arc that represents a shank of human. The base of 

prosthesis dimensions are L x H x W, where: L is the length, H is the height, and W is the 

width of the analyzed part of the prosthesis. The top and bottom layers thicknesses are  

H1 and H3, respectively. The thickness of the central layer (core) of the base of the artificial 

foot is H2 (see Figure 1). 

The element in the shape of the arc is built of two arcs: an outer arc and an inner arc. 

The radius of the outer arc is 210 mm and for the inner arc, it is 180 mm, whereas the 

distance between both these arcs is 24 mm. There is also a distance from the top of the 

base to the end of the inner arc and to the end of the outer arc. The first one is 396 mm, 

whereas the second one is 420 mm. The part of the foot prosthesis which connects the base 

and the element in the shape of the arc is a cleat. A longer height of the cleat which means 

a distance from the top of the base to the beginning of the inner arc is 35 mm and shorter 

height of the cleat, i.e. a distance from the top of the base to the beginning of the outer arc 
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totals 20 mm. A distance between those two heights of the cleat is 40 mm. The width of 

both the cleat and the element in the shape of the arc is the same as the width of the base 

and totals W = 80 mm. 

 

 

 

 

 

 

  

  

 

 

 

Figure 1. The scheme of the considered base of the foot prosthesis. The auxetic core 

is an element with lines in this scheme. 

 

In numerical analysis, the model of foot prosthesis was fixed on a curved surface that 

is located on the bottom layer of the base. This curved surface is in front of the base in  

a place, where the end of toes would be located on a human foot (see Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The model of foot prosthesis fixed on the curved surface of the bottom layer of 

the base (this curved surface is marked on blue). 



Vibrations in Physical Systems 2020, 31, 2020214  (6 of 10) 

5. Numerical results 

The material of the analyzed prosthesis is carbon fiber reinforced polymer (CFRP), which 

is most popular in constructions of this type. The core of the base is computational auxetic 

CFRP material with NPR from -0.9999 to 0.4999. The numerical values of the materials 

parameters are presented in Table 1. The values of properties of CFRP are taken from a 

repertory of materials, which is available in Fusion 360 software. This repertory is some 

sort of library, in which major properties and parameters of materials are defined.  

 

Table 1. Material properties of foot prosthesis layers and core. 

The base of the 

foot prosthesis 

Material Young’s modulus, 

E [GPa] 

Poisson’s ratio, 

ν 

Density, ρ 

[kg/m3] 

Layers – top, 

bottom 

CFRP 133 0.39 1430 

Core Auxetic CFRP 133 from –0.9999 to 

0.4999 

1430 

 

In this study, two parameters of the core are changed: PR and its thickness. The PR of 

the core ν made of viscoelastic auxetic CFRP material is changed in the range of –0.9 to 

0.49. Additionally, the analysis was performed also for extreme values of the ν of the core 

i.e., ν = –0.9999 and ν = 0.4999. All the PR values of the auxetic core used in this study 

are pictured in Table 2. 

 

Table 2. The values of the Poisson’s ratio of the auxetic core for 11 experiments. 

Experiment No. 1 2 3 4 5 6 7 8 9 10 11 

PR, ν –0.9999 -0.9 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.49 0.4999 

 

Dimensions of the base of the prosthesis for all cases are L = 200 mm, H = 30 mm, and 

W = 80 mm. All the curvatures of the base for all cases are R = 10 mm. The base of the 

artificial leg is built of two outer layers made of CFRP and the core made of auxetic CFRP 

material. There are two variants of construction of the base that was used in the performed 

study. The first one includes the base in which thicknesses of the top and bottom layers 

are H1 = H3 = 12.5 mm and the thickness of the core is H2 = 5 mm. In the second variant 

of construction, thicknesses of the top and bottom layers are H1 = H3 =7.5 mm and the 

thickness of the core is H2 = 15 mm. 

Finite element analysis was applied with the use of Fusion 360 software. The modal 

frequencies module of software was chosen to execute the study. The mesh used in the 

analysis for all the simulations is built of 111 427 elements in the shape of a tetrahedron. 

Results obtained in the performed study confirm that the value of the PR and thickness 

of the auxetic core can modify the dynamic behavior of the structure. The basic conclusion 

from the executed numerical analysis is that increase of the value of the PR results in  

a decrease of the values of the eigenfrequencies for both selected thicknesses of the auxetic 

layer. The values of the eigenfrequencies in the range of 0–1000 Hz are pictured in Tables 

3. and 4. 
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The greatest fall of the value of the eigenfrequency appears for change of the PR from 

–0.9999 to –0.9. In the structure, in which the thickness of the core totals H2 = 5 mm, the 

value of the first eigenfrequency changes from 140.1 Hz to 107.6 Hz for the relevant 

change of Poisson’s ratio. Respectively, for H2 = 15 mm, this value shifts from  

154.2 Hz to 122.8 Hz. Further increase of the Poisson’s ratio also causes a decrease of the 

values of the eigenfrequencies, but it is not so significant. This decrease advances until the 

Poisson’s ratio receives the value of 0.4 and then the values of the eigenfrequencies begin 

to grow. In the case of the thickness of the core H2 = 15 mm for ν = 0.4, the first 

eigenfrequency obtains 105.4 Hz, 109.5 Hz for ν = 0.49, and 136.8 Hz for ν = 0.4999. 

 

Table 3. Values of first fifth smallest eigenfrequencies of the foot prosthesis  

with an auxetic layer with thickness H2 = 5 mm. 

 Eigenfrequencies [Hz] 

ν 1st 2nd 3rd 4th 5th 

-0.9999 140.1 236.4 388.4 779.6 1140 

-0.9 107.6 167.4 299.5 660.7 1011 

-0.8 106.6 165.1 297.5 648.5 1006 

-0.6 105.8 163.4 295.4 635.8 1001 

-0.4 105.2 162.5 294.1 628.8 997.1 

-0.2 104.9 161.8 293.1 624.5 994.4 

0 104.6 161.2 292.4 621.6 992.4 

0.2 104.4 160.7 292 619.8 991 

0.4 104.4 160.4 292 619.1 990.7 

0.49 105 161 293.7 619.8 994.5 

0.4999 109.9 166.8 306.7 623.3 1023 

 

Table 4. Values of first fifth smallest eigenfrequencies of the foot prosthesis  

with an auxetic layer with thickness H2 = 15 mm. 

 Eigenfrequencies [Hz] 

ν 1st 2nd 3rd 4th 5th 

-0.9999 154.2 242.9 555.6 944.9 1871 

-0.9 122.8 202.8 333.3 706 1078 

-0.8 116.9 189.7 316.7 675.8 1046 

-0.6 111.3 178 303.4 648.2 1020 

-0.4 108.4 172.3 297 633.8 1006 

-0.2 106.5 168.6 293.3 624.7 997.2 

0 105.4 166.1 291.1 618.8 991.8 

0.2 104.9 164.2 290.2 615 989.2 

0.4 105.4 163.3 291.4 613.8 991.6 

0.49 109.5 167.1 300.4 617.4 1012 

0.4999 136.8 211.4 385.2 651.9 1153 
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Results obtained in this study also acknowledge that the thicker the auxetic core is, the 

higher the eigenfrequencies are. All the values of the eigenfrequencies are greater for the 

structure with the thicker auxetic core. The greatest difference occurs for extreme values 

of the ν of the core, i.e., ν = –0.9999 and ν = 0.4999. In the structure in which the thickness 

of the core totals H2 = 15 mm, for ν = –0.9999 the value of the first eigenfrequency receives 

154.2 Hz, and for ν = 0.4999 it is 136.8 Hz. For H2 = 5 mm, in the case of ν = –0.9999 the 

value totals 140.1 Hz and for ν = 0.4999 it is 109.9 Hz. Results obtained for both 

thicknesses of the auxetic core confirm that the more the value of the PR increases, the 

less significant the differences between the values of the eigenfrequencies are. 

In the examined range of frequencies (0–1000 Hz), the number of resonance 

frequencies changes from four in the case of auxetic core characterized by the ν in the 

range from –0.9999 to –0.6 and for ν = 0.4999 to five resonance frequencies for ν in the 

range from –0.4 to 0.49 in the case of the thickness of the core H2 = 5 mm. In the case of 

the thickness of the core H2  = 15 mm, there are some differences, i.e., four resonance 

frequencies occur for ν in the range from –0.9999 to –0.4 and also for ν = 0.4999 and  

ν  = 0.49, whereas for ν in the range from –0.2 to 0.4 the number of resonance frequencies 

receives five.  

 

 

 

 

  

C) D) 

A) B) 

Figure 3. Mode shapes for H2 = 15 mm: A) 1st eigenfrequency for ν = –0.9999;  

B) 2nd eigenfrequency for ν = –0.9999; C) 1st eigenfrequency for ν = 0.4;  

D) 2nd eigenfrequency for ν = 0.4. 
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Mode shapes are different for each number of eigenfrequencies. Simulations visualize 

total mode displacement, to wit mode shapes for results. In Figure 3 there is a comparison 

of mode shapes for first and second eigenfrequencies in a model of foot prosthesis, where 

the height of the auxetic layer is 15 mm and Poisson’s ratio equals -0.9999 and 0.4. For 

1st eigenfrequencies (see Figure 3A and 3C) prevails displacement in the x-axis, but for 

2nd eigenfrequencies (see Figure 3B and 3D) the most displacement is in the z-axis. In the 

next numbers of eigenfrequencies, displacements are more significant and mode shapes 

are more complex. 

6. Conclusions 

In this paper, eigenfrequencies of foot prosthesis with the viscoelastic auxetic layer were 

investigated. The material of the analyzed prosthesis is carbon fiber reinforced polymer. 

The model of foot prosthesis consists of an element in the shape of an arc and a three-

layered base, in which the central layer is made of an auxetic CFRP material. This material 

is often used for the reduction of vibration. Various values of PR and two values of 

thickness for the auxetic layer are compared. Calculations were made using the finite 

element method with Fusion 360 software. 

Simulation results in the conclusion that using an auxetic layer in the core of foot 

prosthesis has a great impact on the dynamic behavior of prosthesis. Calculations show 

that values of eigenfrequencies are greater for more negative PR and thicker auxetic layer 

in the core. The frequencies that arise in the foot prosthesis as a consequence of using it 

have relatively small values, hence the eigenfrequencies of the foot prosthesis should be 

as high as possible. The greatest values of the eigenfrequencies occur for the thicker 

auxetic layer with the most negative PR value. This combination of properties has the most 

beneficial effect because the greater value of eigenfrequency is, the less exposed to 

vibrations the foot prosthesis is. 
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